Affiliation:
1. From the Hematology/Oncology Unit, Department of Medicine and Department of Laboratory Animal Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY.
Abstract
AbstractWe have shown previously that fibrin(ogen) binds fibroblast growth factor 2 (FGF-2) and potentiates stimulation of endothelial-cell (EC) proliferation. We have now used 2 FGF-2 mutants differing only in the 5 residues constituting the binding site to characterize the importance of this interaction in angiogenesis. The nonbinding (2212) and binding (221*2) mutants stimulated EC proliferation by 2.2 ± 0.4-fold and 2.9 ± 0.3-fold over control, respectively, and both were similar to wild-type (wt) FGF-2 (2.5 ± 0.3-fold). Proliferation was augmented by fibrinogen to 5.3 ± 1.2-fold and 4.8 ± 0.8-fold with wtFGF-2 and 221*2, whereas no augmentation occurred with 2212 and fibrinogen. Using a placental explant model in a fibrin matrix, wtFGF-2 resulted in 2.6 ± 0.9-fold more growth over control, and 221*2 increased growth 3.3 plus or minus 0.9-fold. Vessel outgrowth with 2212 was minimal and comparable to control. Similarly, fibrinogen potentiated wtFGF-2 or 221*2-mediated angiogenesis in the chicken chorioallantoic membrane model. In a mouse Matrigel implant model, fibrinogen significantly increased angiogenesis with either wtFGF-2 or 221*2, whereas there was no augmentation with 2212. These results demonstrate that binding of FGF-2 to fibrin(ogen) mediated by the 5-residue FGF-2-fibrin(ogen) interactive site is required for augmented angiogenesis.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献