Mast cells and neutrophils proteolytically activate chemokine precursor CTAP-III and are subject to counterregulation by PF-4 through inhibition of chymase and cathepsin G

Author:

Schiemann Florian1,Grimm Tobias Alexander1,Hoch Josef1,Gross Roland1,Lindner Buko1,Petersen Frank1,Bulfone-Paus Silvia1,Brandt Ernst1

Affiliation:

1. From the Department of Immunology and Cell Biology, Forschungszentrum Borstel, Borstel, Germany; and Klinik für Hand-, Brustund Plastische Chirurgie, Klinikum Neustadt, Neustadt i.H., Germany.

Abstract

AbstractThe CXC chemokines platelet factor 4 (PF-4/CXCL4) and connective tissue-activating peptide III (CTAP-III) are released by activated human platelets in micromolar concentrations. So far, neutrophils have been recognized to cleave the precursor CTAP-III to form the active chemokine neutrophil-activating peptide 2 (NAP-2/CXCL7) through limited proteolysis by membrane-associated cathepsin G. Here we show for the first time that activated human skin mast cells (MCs) convert CTAP-III into biologically active NAP-2 through proteolytic cleavage by released chymase. A direct comparison on a cell number basis revealed that unstimulated MCs exceed the CTAP-III–processing potency of neutrophils about 30-fold, whereas MCs activated by IgE cross-linking exhibit even 1000-fold higher CTAP-III–processing capacity than fMLP-stimulated neutrophils. Intriguingly, PF-4 counteracted MC- as well as neutrophil-mediated NAP-2 generation at physiologically relevant concentrations. Addressing the underlying mechanism, we obtained evidence that PF-4 acts as an inhibitor of the CTAP-III–processing enzymes cathepsin G and chymase without becoming cleaved itself as a competitive substrate. Because cleavage of the CTAP-III–unrelated substrate substance P was also affected by PF-4, our results suggest a regulatory role for PF-4 not only in NAP-2 generation but also in neutrophil- and MC-mediated processing of other physiologically relevant inflammatory mediators.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference51 articles.

1. Brandt E, Petersen F, Ludwig A, et al. The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. J Leukoc Biol. 2000;67: 471-478.

2. Brandt E, Ludwig A, Petersen F, Flad HD. Platelet-derived CXC chemokines: old players in new games. Immunol Rev. 2000;177: 204-216.

3. Petersen F, Ludwig A, Flad HD, Brandt E. TNF-alpha renders human neutrophils responsive to platelet factor 4. Comparison of PF-4 and IL-8 reveals different activity profiles of the two chemokines. J Immunol. 1996;156: 1954-1962.

4. Petersen F, Bock L, Flad HD, Brandt E. Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood. 1999;94: 4020-4028.

5. Petersen F, Bock L, Flad HD, Brandt E. A chondroitin sulfate proteoglycan on human neutrophils specifically binds platelet factor 4 and is involved in cell activation. J Immunol. 1998;161: 4347-4355.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3