Human herpesvirus 8 enhances human immunodeficiency virus replication in acutely infected cells and induces reactivation in latently infected cells

Author:

Caselli Elisabetta1,Galvan Monica1,Cassai Enzo1,Caruso Arnaldo1,Sighinolfi Laura1,Di Luca Dario1

Affiliation:

1. From the Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy; the Department of Microbiology, University of Brescia, Brescia, Italy; and the Division of Infectious Diseases, S. Anna Hospital, Ferrara, Italy.

Abstract

AbstractHuman herpesvirus 8 (HHV-8) is etiologically associated with Kaposi sarcoma (KS), the most common AIDS-associated malignancy. Previous results indicate that the HHV-8 viral transactivator ORF50 interacts synergistically with Tat protein in the transactivation of human immunodeficiency virus (HIV) long terminal repeat (LTR), leading to increased cell susceptibility to HIV infection. Here, we analyze the effect of HHV-8 infection on HIV replication in monocyte-macrophage and endothelial cells, as potential targets of coinfection. Primary or transformed monocytic and endothelial cells were infected with a cell-free HHV-8 inoculum and subsequently infected with lymphotropic or monocytotropic strains of HIV. The results show that HHV-8 coinfection markedly increases HIV replication in both cell types. HHV-8 infection induces also HIV reactivation in chronically infected cell lines and in peripheral blood mononuclear cells (PBMCs) from patients with asymptomatic HIV, suggesting the possibility that similar interactions might take place also in vivo. Furthermore, coinfection is not an essential condition, since contiguity of differently infected cells is sufficient for HIV reactivation. The results suggest that HHV-8 might be a cofactor for HIV progression and that HHV-8-infected endothelial cells might play a relevant role in transendothelial HIV spread. (Blood. 2005;106:2790-2797)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3