Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes

Author:

Alkhalil Abdulnaser1,Cohn Jamieson V.1,Wagner Marissa A.1,Cabrera Jennifer S.1,Rajapandi Thavamani1,Desai Sanjay A.1

Affiliation:

1. From The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.

Abstract

AbstractInvasion by the human malaria parasite, Plasmodium falciparum, is associated with marked yet selective increases in red blood cell (RBC) membrane permeability. We previously identified an unusual voltage-dependent ion channel, the plasmodial surface anion channel (PSAC), which may account for these increases. Since then, controversy has arisen about whether there are additional parasite-induced anion channels on the RBC membrane and whether these channels are parasite-encoded proteins or the result of modifications of an endogenous host protein. Here, we used genetically divergent parasite isolates and quantitative transport measurements to examine these questions. Our studies indicate that PSAC alone can adequately account for the increased permeability of infected RBCs to key solutes. Two distinct parasite isolates, grown in RBCs from a single donor, exhibit channel activity with measurably different voltage-dependent gating, a finding difficult to reconcile with simple activation or modification of a host protein. Instead, this difference in channel gating can be conservatively explained by a small number of polymorphisms in a parasite gene that encodes PSAC. The absence of known eukaryotic ion channel homologues in the completed P falciparum genome suggests a novel channel gene, and substantiates PSAC as a target for antimalarial development.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3