Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle

Author:

Oh Il-Young1,Yoon Chang-Hwan1,Hur Jin1,Kim Ji-Hyun1,Kim Tae-Youn1,Lee Choon-Soo1,Park Kyung-Woo1,Chae In-Ho1,Oh Byung-Hee1,Park Young-Bae1,Kim Hyo-Soo1

Affiliation:

1. Department of Internal Medicine, Innovative Research Institute for Cell Therapy (IRICT), Seoul National University Hospital, Seoul, Korea

Abstract

AbstractE-selectin plays critical roles in tethering leukocytes to endothelial cells (ECs). We studied the role of E-selectin in endothelial progenitor cell (EPC) homing and vasculogenesis. After ischemia, the expression of E-selectin on ECs peaked 6 to 12 hours and returned to baseline at 24 hours, whereas the level of soluble E-selectin (sE-selectin) in serum increased over 24 hours and remained high at day 7. Mouse bone marrow–derived EPCs expressed not only E-selectin but also its ligand. Homing of circulating EPCs to ischemic limb was significantly impaired in E-selectin knock-out mice, as well as wild-type mice pretreated with blocking antibody against E-selectin, which was rescued by local sE-selectin injection. Mechanism for this is that sE-selectin stimulated not only ECs to express ICAM-1, but also EPCs to secrete interleukin-8 (IL-8), leading to enhanced migration and incorporation to ECs capillary formation. In therapeutic aspect, local treatment with sE-selectin enhanced efficacy of EPC transplantation for vasculogenesis and salvage of ischemic limb. Conversely, when E-selectin was knocked down by E-selectin small interfering RNA, blood flow recovery after EPC transplantation was significantly impaired. But this impaired vasculogenesis was rescued by sE-selectin. In conclusion, these data demonstrate E-selectin is a pivotal molecule for EPCs' homing to ischemic limb and vasculogenesis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3