Fas ligand is localized to membrane rafts, where it displays increased cell death–inducing activity

Author:

Cahuzac Nathalie1,Baum Wiebke1,Kirkin Vladimir1,Conchonaud Fabien1,Wawrezinieck Laure1,Marguet Didier1,Janssen Ottmar1,Zörnig Martin1,Hueber Anne-Odile1

Affiliation:

1. From the Equipe labelisée La Ligue; Institute of Signaling, Developmental Biology and Cancer Research, Nice, France CNRS UMR 6543; Chemotherapeutisches Forschungsinstitut, Frankfurt, Germany; Centre d'Immunologie de Marseille Luminy, Université de la Méditerranée, Marseille, France; and Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Germany.

Abstract

AbstractFas ligand (FasL), a member of the TNF protein family, potently induces cell death by activating its matching receptor Fas. Fas-mediated killing plays a critical role in naturally and pathologically occurring cell death, including development and homeostasis of the immune system. In addition to its receptor-interacting and cell death–inducing extracellular domain, FasL has a well-conserved intracellular portion with a proline-rich SH3 domain–binding site probably involved in non-apoptotic functions. We report here that, as with the Fas receptor, a fraction of FasL is constitutively localized in rafts. These dynamic membrane microdomains, enriched in sphingolipids and cholesterol, are important for cell signaling and trafficking processes. We show that FasL is partially localized in rafts and that increased amounts of FasL are found in rafts after efficient FasL/Fas receptor interactions. Raft disorganization after cholesterol oxidase treatment and deletions within the intracellular FasL domain diminish raft partitioning and, most important, lead to decreased FasL killing. We conclude that FasL is recruited into lipid rafts for maximum Fas receptor contact and cell death–inducing potency. These findings raise the possibility that certain pathologic conditions may be treated by altering the cell death–inducing capability of FasL with drugs affecting its raft localization.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3