Phosphatidylserine exposure in B lymphocytes: a role for lipid packing

Author:

Elliott James I.1,Sardini Alessandro1,Cooper Joanne C.1,Alexander Denis R.1,Davanture Suzel1,Chimini Giovanna1,Higgins Christopher F.1

Affiliation:

1. From the Medical Research Council (MRC) Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, London, United Kingdom; the Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham, Cambridge, United Kingdom; and the Centre d'Immunologie de Marseille-Luminy, Parc Scientifique et Technologique de Luminy, Marseille, France.

Abstract

Plasma membrane lipids are usually distributed asymmetrically, with phosphatidylserine (PS) confined to the inner leaflet. PS exposure at the outer leaflet occurs early in apoptosis, but it is also constitutive on some nonapoptotic cell populations where it plays a role in cell signaling. How PS is transported (“flopped”) to the cell surface is unknown. Contrary to previous reports that normal murine B lymphocytes lack lipid asymmetry, we show that PS is normally restricted to the inner leaflet of these cells. PS exposure on normal B cells did, however, occur spontaneously ex vivo. Consistent with the hypothesis that loss of PS asymmetry is regulated by CD45, PS is constitutively exposed on viable, CD45-deficient B cells. We show that calcium-stimulated PS exposure in B cells is strain variable, ABCA1 independent, and both preceded by and dependent on a decrease in lipid packing. This decrease in lipid packing is concomitant with cell shrinkage and consequent membrane distortion, both of which are potently inhibited by blockers of volume-regulatory K+ and Cl- ion channels. Thus, changes in plasma membrane organization precede PS translocation. The data suggest a model in which PS redistribution may occur by a translocase-independent mechanism at energetically favorable sites of membrane perturbation where lipid packing is decreased.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3