The VPS33B-binding protein VPS16B is required in megakaryocyte and platelet α-granule biogenesis

Author:

Urban Denisa12,Li Ling2,Christensen Hilary2,Pluthero Fred G.2,Chen Shao Zun12,Puhacz Michael12,Garg Parvesh M.3,Lanka Kiran K.3,Cummings James J.3,Kramer Helmut4,Wasmuth James D.5,Parkinson John5,Kahr Walter H. A.126

Affiliation:

1. Department of Biochemistry, University of Toronto, Toronto, ON;

2. Program in Cell Biology, The Hospital for Sick Children, Toronto, ON;

3. Department of Pediatrics, Neonatology Section, The Brody School of Medicine at East Carolina University, Greenville, NC;

4. Departments of Neuroscience and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX;

5. Departments of Biochemistry & Molecular Genetics, University of Toronto, Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON; and

6. Department of Paediatrics, University of Toronto, Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON

Abstract

Abstract Patients with platelet α or dense δ-granule defects have bleeding problems. Although several proteins are known to be required for δ-granule development, less is known about α-granule biogenesis. Our previous work showed that the BEACH protein NBEAL2 and the Sec1/Munc18 protein VPS33B are required for α-granule biogenesis. Using a yeast two-hybrid screen, mass spectrometry, coimmunoprecipitation, and bioinformatics studies, we identified VPS16B as a VPS33B-binding protein. Immunoblotting confirmed VPS16B expression in various human tissues and cells including megakaryocytes and platelets, and also in megakaryocytic Dami cells. Characterization of platelets from a patient with arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome containing mutations in C14orf133 encoding VPS16B revealed pale-appearing platelets in blood films and electron microscopy revealed a complete absence of α-granules, whereas δ-granules were observed. Soluble and membrane-bound α-granule proteins were reduced or undetectable, suggesting that both releasable and membrane-bound α-granule constituents were absent. Immunofluorescence microscopy of Dami cells stably expressing GFP-VPS16B revealed that similar to VPS33B, GFP-VPS16B colocalized with markers of the trans-Golgi network, late endosomes and α-granules. We conclude that VPS16B, similar to its binding partner VPS33B, is essential for megakaryocyte and platelet α-granule biogenesis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3