Intraperitoneal influx of neutrophils in response to IL-33 is mast cell–dependent

Author:

Enoksson Mattias1,Möller-Westerberg Christine1,Wicher Grzegorz2,Fallon Padraic G.3,Forsberg-Nilsson Karin2,Lunderius-Andersson Carolina1,Nilsson Gunnar1

Affiliation:

1. Department of Medicine, Clinical Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden;

2. Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; and

3. Institute of Molecular Medicine, Trinity College, St James's Hospital, Dublin, Ireland

Abstract

Abstract IL-33 is a recently discovered cytokine involved in induction of Th2 responses and functions as an alarmin. Despite numerous recent studies targeting IL-33, its role in vivo is incompletely understood. Here we investigated inflammatory responses to intraperitoneal IL-33 injections in wild-type and mast cell–deficient mice. We found that wild-type mice, but not mast cell–deficient Wsh/Wsh mice, respond to IL-33 treatment with neutrophil infiltration to the peritoneum, whereas other investigated cell types remained unchanged. In Wsh/Wsh mice, the IL-33–induced innate neutrophil response could be rescued by local reconstitution with wild-type but not with T1/ST2−/− mast cells, demonstrating a mast cell–dependent mechanism. Furthermore, we found this mechanism to be partially dependent on mast cell–derived TNF, as we observed reduced neutrophil infiltration in Wsh/Wsh mice reconstituted with TNF−/− bone marrow–derived mast cells compared with those reconstituted with wild-type bone marrow–derived mast cells. In agreement with our in vivo findings, we demonstrate that humanneutrophils migrate toward the supernatant of IL-33–treated human mast cells. Taken together, our findings reveal that IL-33 activates mast cells in vivo to recruit neutrophils, a mechanism dependent on IL-33R expression on peritoneal mast cells. Mast cells activated in vivo by IL-33 probably play an important role in inflammatory reactions.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3