Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction

Author:

Santoni de Sio Francesca Romana1,Cascio Paolo1,Zingale Anna1,Gasparini Mauro1,Naldini Luigi1

Affiliation:

1. From the San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) and San Raffaele Vita Salute University, San Raffaele Scientific Institute, Milan; Department of Morphophysiology, School of Veterinary Medicine, University of Turin; Politecnico di Torino, Turin; and University Center for Statistics in the Biomedical Sciences, San Raffaele Vita-Salute University, Milan, Italy.

Abstract

AbstractThe therapeutic potential of hematopoietic stem cell (HSC) gene therapy can be fully exploited only by reaching efficient gene transfer into HSCs without compromising their biologic properties. Although HSCs can be transduced by HIV-derived lentiviral vectors (LVs) in short ex vivo culture, they display low permissivity to the vector, requiring cytokine stimulation to reach high-frequency transduction. Using stringent assays of competitive xenograft repopulation, we show that early-acting cytokines synergistically enhanced human HSC gene transfer by LVs without impairing engraftment and repopulation capacity. Using S-phase suicide assays, we show that transduction enhancement by cytokines was not dependent on cell cycle progression and that LVs can transduce quiescent HSCs. Pharmacologic inhibition of the proteasome during transduction dramatically enhanced HSC gene transfer, allowing the reach of very high levels of vector integration in their progeny in vivo. Thus, LVs are effectively restricted at a postentry step by the activity of this proteolytic complex. Unexpectedly, cytokine stimulation rapidly and substantially down-regulated proteasome activity in hematopoietic progenitors, highlighting one mechanism by which cytokines may enhance permissiveness to LV gene transfer. These findings demonstrate that antiviral responses ultimately mediated by proteasomes strongly limit the efficiency of HSC transduction by LVs and establish improved conditions for HSC-based gene therapy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3