Gene microarray analysis reveals interleukin-5–dependent transcriptional targets in mouse bone marrow

Author:

Byström Jonas1,Wynn Thomas A.1,Domachowske Joseph B.1,Rosenberg Helene F.1

Affiliation:

1. From the Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD; Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD; Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY.

Abstract

AbstractInterleukin-5 (IL-5) is a hematopoietic differentiation factor that promotes the development of mature eosinophils from progenitors in bone marrow. We present a multifactorial microarray study documenting the transcriptional events in bone marrow of wild-type and IL-5–deficient mice at baseline and in response to infection with Schistosoma mansoni. The microarray data were analyzed by a 4-way subtractive algorithm that eliminated confounding non-IL-5–related sequelae of schistosome infection as well as alterations in gene expression among uninfected mice. Among the most prominent findings, we observed 7- to 40-fold increased expression of transcripts encoding the classic eosinophil granule proteins (eosinophil peroxidase, major basic protein, the ribonucleases) together with arachidonate-15-lipoxygenase and protease inhibitor plasminogen activator inhibitor 2 (PAI-2), in the IL-5–producing, infected wild-type mice only. This was accompanied by increased transcription of genes involved in secretory protein biosynthesis and granule-vesicle formation. Interestingly, we did not detect increased expression of genes encoding eosinophil-related chemokine receptors (CCR1, CCR3) or members of the GATA or CCAAT/enhancer binding protein (C/EBP) transcription factor families. These data suggest that the IL-5–responsive progenitors in the mouse bone marrow are already significantly committed to the eosinophil lineage and that IL-5 promotes differentiation of these committed progenitors into cells with recognizable and characteristic cytoplasmic granules and granule proteins.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3