Distinct characteristics of signal transduction events by histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP)–induced priming and activation of human basophils

Author:

Vonakis Becky M.1,MacGlashan Donald W.1,Vilariño Natalia1,Langdon Jacqueline M.1,Scott Rebecca S.1,MacDonald Susan M.1

Affiliation:

1. The Johns Hopkins Asthma and Allergy Center, Baltimore, MD

Abstract

We previously identified a negative correlation between histamine release to histamine releasing factor/translationally controlled tumor protein (HRF/TCTP) and protein levels of the Src homology 2 domain–containing inositol 5′ phosphatase (SHIP) in basophils. We have also demonstrated that HRF/TCTP primes basophils to release mediators. The purpose of this study was to begin characterization of signal transduction events directly induced by HRF/TCTP and to investigate these events when HRF/TCTP is used as a priming agent for human basophil histamine release. Highly purified human basophils were examined for surface expression of bound HRF/TCTP, changes in calcium, and phosphorylation of Akt, mitogen-activated protein kinase kinase (MEK), extracellular signal–regulated kinase (ERK), Syk, and FcϵRIγ. Results showed that basophils from all donors bound HRF/TCTP. There was a biphasic calcium response to HRF/TCTP, which corresponded to the magnitude of histamine release. Furthermore, those donors who have direct histamine release when exposed to HRF/TCTP (HRF/TCTP responder [HRF/TCTP-R] donors) have phosphorylation of Syk, Akt, MEK, and ERK. Remarkably, basophils from HRF/TCTP-nonresponder (HRF/TCTP-NR) donors do not show phosphorylation of these molecules. This finding is different from IL-3, which also primes basophils for histamine release, but does show phosphorylation of these events. We conclude that priming induced by HRF/TCTP is distinct from that induced by IL-3.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3