Src homology 2 domain-containing inositol-5-phosphatase 1 (SHIP1) negatively regulates TLR4-mediated LPS response primarily through a phosphatase activity- and PI-3K-independent mechanism

Author:

An Huazhang1,Xu Hongmei1,Zhang Minghui1,Zhou Jun1,Feng Tao1,Qian Cheng1,Qi Runzi1,Cao Xuetao1

Affiliation:

1. From the Institute of Immunology, Second Military Medical University, Shanghai, People's Republic of China; Institute of Immunology, Medical School, Tsinghua University, Beijing, People's Republic of China; and Institute of Immunology, Zhejiang University, Hangzhou, People's Republic of China.

Abstract

AbstractSrc homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1) plays important roles in negatively regulating the activation of immune cells primarily via the phosphoinositide 3-kinase (PI-3K) pathway by catalyzing the PI-3K product PtdIns-3,4,5P3 (phosphatidylinositol-3,4,5-triphosphate) into PtdIns-3,4P2. However, the role of SHIP1 in Toll-like receptor 4 (TLR4)-mediated lipopolysaccharide (LPS) response remains unclear. Here we demonstrate that SHIP1 negatively regulates LPS-induced inflammatory response via both phosphatase activity-dependent and -independent mechanisms in macrophages. SHIP1 becomes tyrosine phosphorylated and up-regulated upon LPS stimulation in RAW264.7 macrophages. SHIP1-specific RNA-interfering and SHIP1 overexpression experiments demonstrate that SHIP1 inhibits LPS-induced tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) production by negatively regulating the LPS-induced combination between TLR4 and myeloid differentiation factor 88 (MyD88); activation of Ras (p21ras protein), PI-3K, extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and c-Jun NH2-terminal kinase (JNK); and degradation of IκB-α. SHIP1 also significantly inhibits LPS-induced mitogen-activated protein kinase (MAPK) activation in TLR4-reconstitited COS7 cells. Although SHIP1-mediated inhibition of PI-3K is dependent on its phosphatase activity, phosphatase activity-disrupted mutant SHIP1 remains inhibitory to LPS-induced TNF-α production. Neither disrupting phosphatase activity nor using the PI-3K pathway inhibitor LY294002 or wortmannin could significantly block SHIP1-mediated inhibition of LPS-induced ERK1/2, p38, and JNK activation and TNF-α production, demonstrating that SHIP1 inhibits LPS-induced activation of MAPKs and cytokine production primarily by a phosphatase activity- and PI-3K-independent mechanism. (Blood. 2005;105:4685-4692)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3