Cord blood CD4+CD25+-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function

Author:

Godfrey Wayne R.1,Spoden Darrin J.1,Ge Ying G.1,Baker Seth R.1,Liu Baoling1,Levine Bruce L.1,June Carl H.1,Blazar Bruce R.1,Porter Stephen B.1

Affiliation:

1. From the Departments of Pediatrics and Medicine, University of Minnesota Cancer Center, Division of Hematology, Oncology, and Transplantation, Minneapolis; and the Abramson Family Cancer Research Institute, University of Pennsylvania Cancer Center, Philadelphia.

Abstract

AbstractCD4+CD25+ T regulatory (Treg) cells have been shown to critically regulate self and allograft tolerance in mice. Studies of human Treg cells have been hindered by low numbers present in peripheral blood and difficult purification. We found that cord blood was a superior source for Treg-cell isolation and cell line generation compared with adult blood. Cord blood CD4+CD25+ cells were readily purified and generated cell lines that consistently exhibited potent suppressor activity, with more than 95% suppression of allogeneic mixed lymphocyte reactions (MLRs) (29 of 30 donors). Cultured Treg cells blocked cytokine accumulation in MLRs, with a less robust inhibition of chemokine production. These cell lines uniformly expressed CD25, CD62L, CCR7, CD27, and intracellular cytotoxic T-lymphocyte antigen-4 (CTLA4). FoxP3 protein, but not mRNA, was specifically expressed. Upon restimulation with anti-CD3/CD28 beads, the cultured Treg cells produced minimal cytokines (interleukin-2 [IL-2], interferon-γ [IFN-γ], and IL-10) and preferentially expressed tumor growth factor-β (TGF-β) latency associated protein. Cytokine production, however, was restored to normal levels by restimulation with phorbol myristate acetate (PMA)/ionomycin. Cord blood–derived cultured suppressor cell function was predominantly independent of IL-10 and TGF-β. These results demonstrate cord blood contains a significant number of Treg precursor cells capable of potent suppressor function after culture activation. Banked cord blood specimens may serve as a readily available source of Treg cells for immunotherapy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference44 articles.

1. Sakaguchi S. Naturally arising CD4 regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22: 531-562.

2. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155: 1151-1164.

3. Shevach EM. Regulatory T cells in autoimmmunity. Annu Rev Immunol. 2000;18: 423-449.

4. Hall BM, Fava L, Chen J, et al. Anti-CD4 monoclonal antibody-induced tolerance to MHC-incompatible cardiac allografts maintained by CD4+ suppressor T cells that are not dependent upon IL-4. J Immunol. 1998;161: 5147-5156.

5. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol. 2003;3: 199-210.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3