Affiliation:
1. From the Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL; Burnham Institute, La Jolla, CA; Basic Research Program, SAIC-Frederick, National Cancer Institute at Frederick, MD.
Abstract
Abstract
Engraftment failure following allogeneic bone marrow (BM) transplantation is of clinical concern particularly involving T-cell–depleted inoculum and transplantations for aplastic anemia. Immune resistance by lymphoid and natural killer (NK) populations with “barrier” function is well established. Major histocompatibility complex (MHC)–identical marrow allografts were examined to investigate effector pathways in non-NK–mediated resistance. Barrier function was examined in cytotoxic normal and deficient B6 (H-2b) recipients primed to donor minor histocompatibility antigen (MiHA) prior to BM transplantation. Host resistance was sensitively evaluated by colony-forming unit (CFU) assays to directly assess for donor progenitor cell (PC) and peripheral chimerism. B6 host CD8+ T cells but not CD4+ or NK1.1+ cells effected rejection of primitive (CFU-HPP [high-proliferative potential]) and lineage-committed (CFU-IL3/GM [interleukin 3/granulocyte macrophage]) allogeneic donor progenitors. To address complementation by the cytotoxic pathways existing in singly deficient (perforin or FasL) recipients, cytotoxically double (perforin plus FasL) deficient (cdd) recipients were used. Resistance in B6-cdd recipients was comparable to that of wild-type B6 recipients and was also dependent on CD8+ T cells. A “triple” cytotoxic deficient model, involving transplantation of TNFR1−/− (tumor necrosis factor receptor 1) progenitor grafts did not diminish the ability of B6-cdd recipients to reject allografts. Finally, injection of anti-TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) monoclonal antibody (mAb) in B6-cdd recipients also failed to inhibit rejection of TNFR1−/− marrow grafts. In total, these studies demonstrate that CD8+ host T cells can effectively resist MHC-matched MiHA-mismatched donor PCs via alternative effector pathway(s) independent of perforin-, FasL-, TNFR-1–, and TRAIL-dependent cytotoxicity. Therefore, inhibition of these effector pathways in sensitized recipients is unlikely to result in stem cell engraftment following PC allografts.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献