An anti-CD20–IL-2 immunocytokine is highly efficacious in a SCID mouse model of established human B lymphoma

Author:

Gillies Stephen D.1,Lan Yan1,Williams Steven1,Carr Frank1,Forman Stephen1,Raubitschek Andrew1,Lo Kin-Ming1

Affiliation:

1. From the EMD Lexigen Research Center, Billerica, MA; Biovation, Aberdeen, Scotland; and Department of Radioimmunotherapy, City of Hope National Medical Center, Duarte, CA.

Abstract

AbstractWe have engineered an anti-CD20–interleukin 2 (IL-2) immunocytokine (ICK) based on the Leu16 anti-CD20 antibody and have deimmunized both the variable (V) regions as well as the junction between the heavy (H) chain constant region and IL-2. Mutations were made to remove potential T-cell epitopes identified by in silico binding to major histocompatibility complex (MHC) class II molecules. The resulting immunocytokine, DI-Leu16-IL-2, retained full anti-CD20 activity as assessed by fluorescence-activated cell-sorting (FACS) analysis, and had enhanced antibody-dependent cellular cytotoxicity (ADCC) effector function relative to the DI-Leu16 antibody or control anti-CD20 antibody (rituximab). In a severe combined immunodeficient (SCID) mouse model of disseminated, residual lymphoma, anti-CD20–IL-2 immunocytokines based on Leu16 were far more effective at a dose of 0.25 mg/kg than anti-CD20 antibody given at 25/mg/kg, despite a shorter half-life of the ICK. Anti-CD20–IL-2 was also far more effective than a control ICK targeted to an antigen with greatly reduced expression on Daudi tumor cells, or various combinations of anti-CD20 antibodies and IL-2. Antitumor activity of DI-Leu16-IL-2 was shown to partially but not entirely depend on Fc receptor (R) binding, suggesting that ADCC and targeting of IL-2 both play roles in the mechanism of tumor clearance. Based on these animal models, DI-Leu16-IL-2 could offer therapeutic potential for patients with CD20 positive lymphoma. Clinical trials are currently under development.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3