Affiliation:
1. Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD; and
2. the Laboratory of Immunology, Division of Therapeutic Proteins, Office of Biological Products, Center for Drug Evaluation and Research, Food and Drug Administration, Department of Health & Human Services, Bethesda, MD
Abstract
Abstract
CD40L on CD4+ T cells plays a vital role in the activation of antigen-presenting cells, thus catalyzing a positive feedback loop for T-cell activation. Despite the pivotal juxtaposition of CD40L between antigen-presenting cells and T-cell activation, only a T-cell receptor stimulus is thought to be required for early CD40L surface expression. We show, for the first time, that CD40L expression on peripheral blood CD4+ T cells is highly dependent on a cell-cell interaction with CD14hiCD16− monocytes. Interactions with ICAM-1, LFA-3, and to a lesser extent CD80/CD86 contribute to this enhancement of CD40L expression but are not themselves sufficient. The contact-mediated increase in CD40L expression is dependent on new mRNA and protein synthesis. Circulating myeloid dendritic cells also possess this costimulatory activity. By contrast, CD14loCD16+ monocytes, plasmacytoid dendritic cells, B-cell lymphoma lines, and resting, activated, and Epstein-Barr virus–immortalized primary B cells all lack the capacity to up-regulate early CD40L. The latter indicates that a human B cell cannot activate its cognate T cell to deliver CD40L-mediated help. This finding has functional implications for the role of biphasic CD40L expression, suggesting that the early phase is associated with antigen-presenting cell activation, whereas the late phase is related to B-cell activation.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献