Affiliation:
1. Programs in Immunobiology and Cancer and
2. Arthritis and Immunology, Oklahoma Medical Research Foundation, Oklahoma City
Abstract
Abstract
We previously reported the inhibitory action of interleukin-6 (IL-6) on B lymphopoiesis with SHIP−/− mice and showed that IL-6 biases lineage commitment toward myeloid cell fates in vitro and in vivo. Because elevated IL-6 is a feature of chronic inflammatory diseases, we applied an animal model of systemic lupus erythematosus (SLE) to determine whether IL-6 has similar effects on hematopoiesis. We found that IL-6 levels were elevated in the B6.Sle1.Yaa mice, and the increase was accompanied by losses of CD19+ B cells and more primitive B-lymphoid progenitors in bone marrow. Both the CD19+ B-cell population and their progenitors recovered in an IL-6−/− background. The uncommitted progenitors, containing precursors for both lymphoid and myeloid fates, expressed IL-6 receptor-α chain and responded to IL-6 by phosphorylation of STAT3. IL-6 stimulation caused uncommitted progenitors to express the Id1 transcription factor, which is known to inhibit lymphopoiesis and elevate myelopoiesis, and its expression was MAPK dependent. We conclude that chronic inflammatory conditions accompanied by increased IL-6 production bias uncommitted progenitors to a myeloid fate by inducing Id1 expression.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献