Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion

Author:

Zhang Cheng Cheng1,Lodish Harvey F.1

Affiliation:

1. From the Whitehead Institute for Biomedical Research, Cambridge, MA, and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.

Abstract

Abstract Ex vivo expansion of hematopoietic stem cells (HSCs) is important for many clinical applications, and knowledge of the surface phenotype of ex vivo–expanded HSCs will be critical to their purification and analysis. Here, we developed a simple culture system for bone marrow (BM) HSCs using low levels of stem cell factor (SCF), thrombopoietin (TPO), insulin-like growth factor 2 (IGF-2), and fibroblast growth factor-1 (FGF-1) in serum-free medium. As measured by competitive repopulation analyses, there was a more than 20-fold increase in numbers of long-term (LT)–HSCs after a 10-day culture of total BM cells. Culture of BM “side population” (SP) cells, a highly enriched stem cell population, for 10 days resulted in an approximate 8-fold expansion of repopulating HSCs. Similar to freshly isolated HSCs, repopulating HSCs after culture were positive for the stem cell markers Sca-1, Kit, and CD31 and receptors for IGF-2. Surprisingly, prion protein and Tie-2, which are present on freshly isolated HSCs, were not on cultured HSCs. Two other HSC markers, Endoglin and Mpl, were expressed only on a portion of cultured HSCs. Therefore, the surface phenotype of ex vivo–expanded HSCs is different from that of freshly isolated HSCs, but this plasticity of surface phenotype does not significantly alter their repopulation capability.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3