CD3/CD28-costimulated T1 and T2 subsets: differential in vivo allosensitization generates distinct GVT and GVHD effects

Author:

Jung Unsu1,Foley Jason E.1,Erdmann Andreas A.1,Eckhaus Michael A.1,Fowler Daniel H.1

Affiliation:

1. From the Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; and the Office of Research Services, Veterinary Resources Program, National Institutes of Health, Bethesda, MD.

Abstract

AbstractAdoptive T-cell therapy using CD3/CD28 co-stimulation likely requires in vivo generation of antigen specificity. Because CD28 promotes TH1/TC1 (T1) or TH2/TC2 (T2) differentiation, costimulation may generate donor T1 or T2 cells capable of differentially mediating allogeneic graft-versus-tumor (GVT) effects and graft-versus-host disease (GVHD). Costimulation under T1 or T2 conditions indeed generated murine TH1/TC1 cells secreting interleukin-2/interferon-γ (IL-2/IFN-γ) or TH2/TC2 cells secreting IL-4/IL-5/IL-10. In vivo, allogeneic T1 cells expanded, maintained T1 secretion, and acquired allospecificity involving IFN-γ and IL-5. In contrast, allogeneic T2 cells expanded less and maintained T2 secretion but did not develop significant allospecificity.Allogeneic, but not syngeneic, T1 cells mediated a GVT effect against host-type breast cancer cells, as median survival time (MST) increased from 25.6 ± 2.6 (tumor controls) to 69.2 ± 5.9 days (P < 1.2 × 10-9). This T1-associated GVT effect operated independently of fasL because T1 cells from gld mice mediated tumor-free survival. In contrast, allogeneic T2 cells mediated a modest, noncurative GVT effect (MST, 29 ± 1.3 days; P < .0019). T1 recipients had moderate GVHD (histologic score, 4 of 12) that contributed to lethality after bone marrow transplantation; in contrast, T2 recipients had minimal GVHD (histologic score, 1 of 12). CD3/CD28 co-stimulation, therefore, generates T1 or T2 populations with differential in vivo capacity for expansion to alloantigen, resulting in differential GVT effects and GVHD.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3