Specific involvement of caspases in the differentiation of monocytes into macrophages

Author:

Sordet Olivier1,Rébé Cédric1,Plenchette Stéphanie1,Zermati Yaël1,Hermine Olivier1,Vainchenker William1,Garrido Carmen1,Solary Eric1,Dubrez-Daloz Laurence1

Affiliation:

1. From Institut National de la Santé et de la Recherche Médicale (INSERM) U517, Institut Fédératif de Recherche (IFR) 100, Faculty of Medicine, Dijon, France; Centre National de Recherches Scientifiques (CNRS) UMR 8603, IFR Necker, Paris, France; and INSERM U362, Institut Gustave Roussy, Villejuif, France.

Abstract

Caspases are cysteine proteases involved in apoptosis and cytokine maturation. In erythroblasts, keratinocytes, and lens epithelial cells undergoing differentiation, enucleation has been regarded as a caspase-mediated incomplete apoptotic process. Here, we show that several caspases are activated in human peripheral blood monocytes whose differentiation into macrophages is induced by macrophage colony-stimulating factor (M-CSF). This activation is not associated with cell death and cannot be detected in monocytes undergoing dendritic cell differentiation in the presence of interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The mechanisms and consequences of caspase activation were further studied in U937 human monocytic cells undergoing phorbol ester–induced differentiation into macrophages. Differentiation-associated caspase activation involves the release of cytochrome c from the mitochondria and leads to the cleavage of the protein acinus while the poly(ADP-ribose)polymerase remains uncleaved. Inhibition of caspases by either exposure to the broad-spectrum inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp-fluoromethylketone (z-VAD-fmk) or expression of the p35 baculovirus inhibitory protein or overexpression of Bcl-2 inhibits the differentiation process. In addition, z-VAD-fmk amplifies the differentiation-associated production of radical oxygen species in both phorbol ester–differentiated U937 cells and M-CSF–treated monocytes, shifting the differentiation process to nonapoptotic cell death. Altogether, these results indicate that caspase activation specifically contributes to the differentiation of monocytes into macrophages, in the absence of cell death.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 273 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3