Presence of the BCR-ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia

Author:

Hofmann Wolf-Karsten1,Komor Martina1,Wassmann Barbara1,Jones Letetia C.1,Gschaidmeier Harald1,Hoelzer Dieter1,Koeffler H. Phillip1,Ottmann Oliver G.1

Affiliation:

1. From the Department of Hematology, University Hospital, Frankfurt/Main, Germany; the Division of Hematology/Oncology, Cedars Sinai Research Institute, University of California Los Angeles (UCLA) School of Medicine, CA; and Novartis Pharma AG, Nuremberg, Germany

Abstract

AbstractThe tyrosine kinase inhibitor STI571 (imatinib) binds competitively to the adenosine triphosphate (ATP) binding site of the ABL kinase, thereby inhibiting auto- and substrate phosphorylation of the oncogenic protein BCR-ABL and preventing the activation of downstream signaling pathways. Comparative studies on leukemic cell samples obtained from chronic myelogenous leukemia (CML) and Philadelphia chromosome–positive (Ph+) acute lymphoblastic leukemia (ALL) patients before and after treatment with STI571 reported point mutations in resistant samples after a short time of therapy. The aim of this study was to determine whether patients with Ph+ ALL in whom resistance developed as a consequence of the Glu255Lys mutation already harbored this subclone prior to STI571 treatment. First, the migration pattern of cDNAs from 30 bone marrow samples from patients with Ph+ ALL was analyzed by polymerase chain reaction–single strand conformation polymorphism (PCR-SSCP). Thereafter, detailed mutational analysis using genomic DNA was performed on initial STI571-naive bone marrow samples of 4 individuals with Ph+ ALL, for whom the mutation Glu255Lys in association with STI571 treatment had been shown. A 166-bp PCR fragment spanning from nucleotide (nt) 862 to nt 1027 was cloned, and 108 clones per sample were analyzed by direct sequencing. This more sensitive technique revealed the presence of the Glu255Lys mutation in 2 initial samples, one clone each. We identified for the first time the mutation Glu255Lys in STI571-naive leukemic samples of Ph+ ALL patients. The findings suggest that the mutation exists in a very small subpopulation of leukemic cells at the beginning of STI571 therapy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3