Estrogen: Friend or Foe in Monge's Disease?

Author:

Azad Priti1,Villafuerte Francisco2,Haddad Gabriel3

Affiliation:

1. University of California San Diego, La Jolla, CA

2. Universidad Peruana Cayetano Heredia Lima, lima, Peru

3. University of California, La Jolla, CA

Abstract

Rationale: Chronic mountain sickness (CMS), or Monge's disease, is a progressive debilitating syndrome caused by chronic (years) exposure to high altitude hypoxia, as experienced by people living in the Andean region. Excessive erythrocytosis (EE) is one of the critical traits of CMS and this excessive pathobiologic response has deleterious effects since a high hematocrit would increase blood viscosity and reduce blood flow to hypoxia-sensitive organs (brain and heart), often resulting in myocardial infarction or stroke in young adults. Within the population of Cerro de Pasco in the Andes, CMS prevalence is vastly different between males and females, being rare in females. Of interest is that there is a sharp increase in CMS incidence in females after menopause. This suggests the role of gender and sex hormones in altering disease manifestation. Methods: In order to understand the molecular basis for polycythemia of high altitude, we have generated a disease in-the dish-model by re-programming fibroblasts and native CD34+ve cells from CMS and non-CMS subjects and converting them to RBC. Using this in-vitro platform, we are now studying the interactions between genetic factors and sex hormones (Testosterone, Estrogen and Progesterone) and their effect on RBC production in the CMS and non-CMS subjects at high altitude. Results: While we found that testosterone increased RBC production mildly (insignificantly), estrogen in physiologic concentrations (10nM), in sharp contrast, reduced the CD235a (Glycophorin A- marker of mature RBC) remarkably (from 56% in the untreated CMS sample to 10% in the treated CMS) and eliminated the CMS EE phenotype. There is also stage-specificity and dose response effects for estrogen. This strongly suggests that estrogen has a protective role against the polycythemia phenotype. To probe further, we studied the effect of estrogen (10nM) on GATA1, a critical link with erythropoiesis. There was a sharp 5 fold decrease in GATA1 (p<0.01) and its target genes such as Alas2 (p<0.001) in erythroid cells. This decreased expression resulted in marked reduction (>50%) in RBC production, demonstrating that estrogen constrains RBC production in females. Conclusion: Our results demonstrate that estrogen inhibits GATA1 expression and prevents excessive erythropoiesis and Monge's disease in females at high altitude. We believe that these studies not only shed light on the role of sex hormones on hypoxia-induced excessive erythropoiesis but have a broader application in their regulation of erythropoiesis and related blood disorders. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3