BCR-ABL1 p190 in CML: A Minor Breakpoint with a Major Impact

Author:

Awad Shady Adnan12,Hohtari Helena12,Javarappa Komal Kumar3,Brandstoetter Tania4,Kim Daehong12,Potdar Swapnil3,Heckman Caroline A5,Kytölä Soili6,Porkka Kimmo12,Doma Eszter4,Sexl Veronika4,Kankainen Matti12,Mustjoki Satu12

Affiliation:

1. Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland

2. Translational Immunology Research program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland

3. Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland

4. Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria

5. Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland

6. Laboratory of Genetics, HUSLAB, Helsinki University Hospital, Helsinki, Finland

Abstract

Introduction: The oncoprotein Bcr-Abl has two major isoforms, depending on the breakpoint in BCR gene, p190 and p210. While p210 is the hallmark of chronic myeloid leukemia (CML), p190 occurs in the majority of Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) patients. p190 occurs as a sole transcript in 1-2% CML patients, associated with distinct features like monocytosis and frequent additional cytogenetic abnormalities (ACA) at diagnosis. It also confers a risk of treatment failure and progression in chronic phase (CP) CML patients. However, the underlying mechanisms are largely unknown. Here we explore the characteristics of p190 and p210 in CML and ALL patients using next generation sequencing, phospho-flowcytometry and high throughput drug testing. Patients and methods: Peripheral blood mononuclear cells (PMNC) were collected at diagnosis from four CP-CML patients harboring p190 isoform from Helsinki University Hospital. Genetic alterations were identified by whole exome sequencing. RNA sequencing was employed to analyze transcriptional profiles of p190 CML (n=3) in contrast to p210 CML patients (n=4). A thorough transcriptional, phosphorylation and drug sensitivity profiling were applied to five p190- and three p210-expressing Ph+ALL patients. Expression alterations were further characterized in two cell line models mimicking BCR-ABL positive leukemia (Ba/F3 and HPCLSK). Phosphorylation profiles were analyzed by flowcytometry and phospho-array (Tyrosine Phosphorylation ProArray, Full Moon Biosystems). For drug sensitivity and resistance testing (DSRT), a custom plate set comprising 75 approved and investigational oncology drugs was used for patient samples and more extensive 528-drugs plates were used for the cell lines. Results: CML patients with p190 had a median age of 72.5 years at the diagnosis (range: 50-80) and all received imatinib as a frontline treatment. Only one patient achieved a fluctuating major molecular response (MMR) by 12 months while the rest of the patients showed primary resistance to treatment and were shifted to a 2nd line TKI, nilotinib (n=2) or proceeded to HSCT (n=1). By exome sequencing we identified 26 variants in p190-CML samples (median per patient=7, range: 2-10), including variants in ASXL1, DNMT3A and KDM4D genes. RNA-sequencing analysis identified 19 and 97 dysregulated genes (Q <0.05) between p190- and p210 in CML and Ph+ ALL cells respectively. In CML, enrichment analysis revealed upregulation of TNF, interferon (IFN), IL1-R and Toll-like receptor (TLR) signaling, TP53-related, cell cycle and apoptosis pathways. Among Ph+ ALL samples, many CML-related genes were upregulated in samples encompassing p210 while IFN-, TP53- and cell cycle-related molecules were upregulated in p190 samples. p190 samples exhibited hyper-phosphorylation of Src kinase compared to p210 samples. DSRT results also revealed increased sensitivity of primary Ph+ ALL-p190 cells to Src-inhibitors (dasatinib and saracatinib), glucocorticoids and MDM2 inhibitors/TP53 activators (SAR405838 and idasanutlin). Regarding cell lines, Ba/F3-p190 showed the upregulation of interferon signaling pathways compared to p210. Src was also hyperphosphorylated in both Ba/F3 and HPCLSK p190 models. In addition to glucocorticoids and Src-inhibitors, compounds blocking the activity of the inhibitors of apoptosis protein (IAP) family were highly effective at reducing the viability of p190 compared to p210 cells in both cell lines. Conclusions: In CML, p190 isoform of BCR-ABL1 is associated with distinct features and should be considered as a high-risk group. Combining clinical, genomic, phosphorylation and drug sensitivity data, we demonstrated that p190 activates specific cancer pathways, notably Src signaling and interferon pathways. Data also suggests that CML patients with p190 could benefit from broad spectrum TKI with Src inhibiting activity or combination of TKI with MDM2- or IAP-inhibitors. Disclosures Heckman: Orion Pharma: Research Funding; Celgene: Research Funding; Novartis: Research Funding; Oncopeptides: Research Funding. Porkka:Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Daiichi Sankyo: Consultancy, Research Funding. Mustjoki:Novartis: Research Funding; Pfizer: Research Funding; BMS: Honoraria, Research Funding.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3