Human dendritic cells express neuronal Eph receptor tyrosine kinases: role of EphA2 in regulating adhesion to fibronectin

Author:

de Saint-Vis Blandine1,Bouchet Caroline1,Gautier Grégory1,Valladeau Jenny1,Caux Christophe1,Garrone Pierre1

Affiliation:

1. From the Laboratory for Immunological Research, Schering-Plough, Dardilly, France; and Institut National de la Santé et de la Recherche Médicale (INSERM) U346, Hôpital E. Herriot, Pavillon R, Lyon, France.

Abstract

AbstractEph receptor tyrosine kinases and their ligands, the ephrins, have been primarily described in the nervous system for their roles in axon guidance, development, and cell intermingling. Here we address whether Eph receptors may also regulate dendritic cell (DC) trafficking. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that DCs derived from CD34+ progenitors, but not from monocytes, expressed several receptors, in particular EphA2, EphA4, EphA7, EphB1, and EphB3 mRNA. EphB3 was specifically expressed by Langerhans cells, and EphA2 and EphA7 were expressed by both Langerhans- and interstitial-type DCs. EphA and EphB protein expression on DCs generated in vitro was confirmed by staining with ephrin-A3-Fc and ephrin-B3-Fc fusion proteins that bind to different Eph members, in particular EphA2 and EphB3. Immunostaining with anti-EphA2 antibodies demonstrated the expression of EphA2 by immature DCs and by skin Langerhans cells isolated ex vivo. Interestingly, ephrin expression was detected in epidermal keratinocytes and also in DCs. Adhesion of CD34+-derived DCs to fibronectin, but not to poly-l-lysine, was increased in the presence of ephrin-A3-Fc, a ligand of EphA2, through a β1 integrin activation pathway. As such, EphA2/ephrin-A3 interactions may play a role in the localization and network of Langerhans cells in the epithelium and in the regulation of their trafficking. (Blood. 2003;102:4431-4440)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3