The effect of human tissue factor pathway inhibitor-2 on the growth and metastasis of fibrosarcoma tumors in athymic mice

Author:

Chand Hitendra Singh1,Du Xin1,Ma Duan1,Inzunza Hector David1,Kamei Shintaro1,Foster Donald1,Brodie Steven1,Kisiel Walter1

Affiliation:

1. From the Departments of Pathology and Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque; and ZymoGenetics Inc, Seattle, WA.

Abstract

AbstractHuman tissue factor pathway inhibitor-2 (TFPI-2) is a matrix-associated Kunitz inhibitor that inhibits the plasmin- and trypsin-mediated activation of zymogen matrix metalloproteinases involved in tumor progression, invasion, and metastasis. To directly assess its role in tumor growth and metastasis in vivo, we stably transfected HT-1080 fibrosarcoma cells expressing either fully active wild-type human TFPI-2 (WT) or inactive R24Q TFPI-2 (QT) and examined their ability to form tumors and metastasize in athymic mice in comparison to mock-transfected cells (MT). MT and QT fibrosarcoma tumors grew 2 to 3 times larger than WT tumors. Tumor metastasis was confined to the lung and was observed in 75% of mice treated with either MT or QT cells, whereas only 42% of mice treated with WT cells developed lung metastases. Real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analyses of each tumor group revealed 3- to 6-fold lower levels of murine vascular endothelial growth factor gene expression in WT tumors in relation to either MT or QT tumors. Comparative tumor gene expression analysis revealed that several human genes implicated in oncogenesis, invasion, metastasis, apoptosis, and angiogenesis had significantly altered levels of expression in WT tumors. Our collective data demonstrate that secretion of inhibitory TFPI-2 by a highly metastatic tumor cell markedly inhibits its growth and metastasis in vivo by regulating pericellular extracellular matrix (ECM) remodeling and angiogenesis. (Blood. 2004;103:1069-1077)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3