Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells

Author:

Schnurr Max1,Toy Tracey1,Shin Amanda1,Hartmann Gunther1,Rothenfusser Simon1,Soellner Julia1,Davis Ian D.1,Cebon Jonathan1,Maraskovsky Eugene1

Affiliation:

1. From the Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Austin and Repatriation Medical Centre, Heidelberg, Australia; and the Department of Internal Medicine, Division of Clinical Pharmacology, University of Munich, Germany.

Abstract

Abstract Plasmacytoid dendritic cells (PDCs) are potent regulators of immune function and the major source of type I interferon (IFN) following viral infection. PDCs are found at sites of inflammation in allergic reactions, autoimmune disorders, and cancer, but the mechanisms leading to the recruitment of PDCs to these sites remain elusive. During inflammation, adenosine is released and functions as a signaling molecule via adenosine receptors. This study analyzes adenosine receptor expression and function in human PDCs. Adenosine was found to be a potent chemotactic stimulus for immature PDCs via an A1 receptor–mediated mechanism. The migratory response toward adenosine was comparable to that seen with CXCL12 (stromal-derived factor-1α [SDF-1α), the most potent chemotactic stimulus identified thus far for immature PDCs. Upon maturation, PDCs down-regulate the A1 receptor, resulting in a loss of migratory function. In contrast, mature PDCs up-regulate the A2a receptor, which is positively coupled to adenylyl cyclase and has been implicated in the down-regulation of DC cytokine-producing capacity. We show that in mature PDCs adenosine reduces interleukin-6 (IL-6), IL-12, and IFN-α production in response to CpG oligodeoxynucleotides (ODN). These findings indicate that adenosine may play a dual role in PDC-mediated immunity by initially recruiting immature PDCs to sites of inflammation and by subsequently limiting the extent of the inflammatory response induced by mature PDCs by inhibiting their cytokine-producing capacity.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3