β2-Glycoprotein I: a novel component of innate immunity

Author:

Ağar Çetin12,de Groot Philip G.2,Mörgelin Matthias3,Monk Stephanie D. D. C.1,van Os Gwendolyn12,Levels Johannes H. M.1,de Laat Bas24,Urbanus Rolf T.2,Herwald Heiko3,van der Poll Tom56,Meijers Joost C. M.17

Affiliation:

1. Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands;

2. Department of Clinical Chemistry and Haematology, University Medical Center, Utrecht, the Netherlands;

3. Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden;

4. Sanquin Research, Amsterdam, the Netherlands; and

5. Centers of Infection and Immunity Amsterdam (CINIMA) and

6. Experimental and Molecular Medicine (CEMM) and

7. Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Abstract

AbstractSepsis is a systemic host response to invasive infection by bacteria. Despite treatment with antibiotics, current mortality rates are in the range of 20%-25%, which makes sepsis the most important cause of death in intensive care. Gram-negative bacteria are a prominent cause of sepsis. Lipopolysaccharide (LPS), one of the major constituents of the outer membrane of Gram-negative bacteria, plays a major role in activating the host's immune response by binding to monocytes and other cells. Several proteins are involved in neutralization and clearance of LPS from the bloodstream. Here, we provide evidence that β2-glycoprotein I (β2GPI) is a scavenger of LPS. In vitro, β2GPI inhibited LPS-induced expression of tissue factor and IL-6 from monocytes and endothelial cells. Binding of β2GPI to LPS caused a conformational change in β2GPI that led to binding of the β2GPI-LPS complex to monocytes and ultimately clearance of this complex. Furthermore, plasma levels of β2GPI were inversely correlated with temperature rise and the response of inflammatory markers after a bolus injection of LPS in healthy individuals. Together, these observations provide evidence that β2GPI is involved in the neutralization and clearance of LPS and identify β2GPI as a component of innate immunity.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3