Perforin is a critical physiologic regulator of T-cell activation

Author:

Lykens Jennifer E.1,Terrell Catherine E.1,Zoller Erin E.1,Risma Kimberly2,Jordan Michael B.13

Affiliation:

1. Divisions of Immunobiology,

2. Allergy and Immunology, and

3. Bone Marrow Transplant and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH

Abstract

AbstractIndividuals with impaired perforin-dependent cytotoxic function (Ctx−) develop a fatal inflammatory disorder called hemophagocytic lymphohistiocytosis (HLH). It has been hypothesized that immune hyperactivation during HLH is caused by heightened infection, defective apoptosis/responsiveness of Ctx− lymphocytes, or enhanced antigen presentation. Whereas clinical and experimental data suggest that increased T-cell activation drives HLH, potential abnormalities of T-cell activation have not been well characterized in Ctx− hosts. To define such abnormalities and to test these hypotheses, we assessed in vivo T-cell activation kinetics and viral loads after lymphocytic choriomeningitis virus (LCMV) infection of Ctx− mice. We found that increased T-cell activation occurred early during infection of Ctx− mice, while they had viral burdens that were identical to those of WT animals, demonstrating that T-cell hyperactivation was independent of viral load. Furthermore, cell transfer and signaling studies indicated that increased antigenic stimulation, not a cell-intrinsic defect of responsiveness, underlay heightened T-cell activation in vivo. Finally, direct measurement of viral antigen presentation demonstrated an increase in Ctx− mice that was proportional to abnormal T-cell activation. We conclude that perforin-dependent cytotoxicity has an immunoregulatory role that is distinguishable from its pathogen clearance function and limits T-cell activation in the physiologic context by suppressing antigen presentation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3