LDL receptor cooperates with LDL receptor–related protein in regulating plasma levels of coagulation factor VIII in vivo

Author:

Bovenschen Niels1,Mertens Koen1,Hu Lihui1,Havekes Louis M.1,van Vlijmen Bart J. M.1

Affiliation:

1. From the Department of Plasma Proteins, Sanquin Research at CLB, Amsterdam, The Netherlands; TNO Prevention and Health, Gaubius Laboratory, Leiden, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Departments of Internal Medicine, Cardiology, and Hematology, Leiden University Medical Center, Leiden, The Netherlands.

Abstract

AbstractLow-density lipoprotein (LDL) receptor (LDLR) and LDLR-related protein (LRP) are members of the LDLR family of endocytic receptors. LRP recognizes a wide spectrum of structurally and functionally unrelated ligands, including coagulation factor VIII (FVIII). In contrast, the ligand specificity of LDLR is restricted to apolipoproteins E and B-100. Ligand binding to the LDLR family is inhibited by receptor-associated protein (RAP). We have previously reported that, apart from LRP, other RAP-sensitive mechanisms contribute to the regulation of FVIII in vivo. In the present study, we showed that the extracellular ligand-binding domain of LDLR interacts with FVIII in vitro and that binding was inhibited by RAP. The physiologic relevance of the FVIII–LDLR interaction was addressed using mouse models of LDLR or hepatic LRP deficiency. In the absence of hepatic LRP, LDLR played a dominant role in the regulation and clearance of FVIII in vivo. Furthermore, FVIII clearance was accelerated after adenovirus-mediated gene transfer of LDLR. The role of LDLR in FVIII catabolism was not secondary to increased plasma lipoproteins or to changes in lipoprotein profiles. We propose that LDLR acts in concert with LRP in regulating plasma levels of FVIII in vivo. This represents a previously unrecognized link between LDLR and hemostasis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3