Affiliation:
1. From the Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL.
Abstract
Abstract
Using intracellular p24 staining to discriminate between bystander and HIV productively infected cells, we evaluated the properties of HIV productively infected cells in terms of cytokine expression, activation status, apoptosis, and cell proliferation. We demonstrate that HIV productively infected primary CD4+ T cells express 12- to 47-fold higher type 1 cytokines than bystander or mock-infected cells. The frequency of HIV productive replication occurred predominantly in T-helper 1 (Th1), followed by Th0, then by Th2 cells. These productively infected cells expressed elevated levels of CD95, CD25, CXC chemokine receptor 4 (CXCR4), and CC chemokine receptor 5 (CCR5). While productively infected cells were only 1.8-fold higher in apoptosis frequency, they up-regulated the antiapoptotic protein B-cell leukemia 2 (Bcl-2) by 10-fold. Up-regulation of interleukin-2 (IL-2) and Bcl-2 were dependent on phosphatidylinositol-3-kinase signal transduction, given that it was down-regulated by Wortmanin treatment. Additionally, 60% of productively infected cells entered the cell cycle, as evaluated by Ki67 staining, but none divided, as evaluated by carboxyfluoresccin diacetate succinimidyl ester (CFSE) staining. Evaluation of cell cycle progression by costaining for DNA and RNA indicated that the cells were arrested in G2/M. Collectively, these data indicate that HIV replication occurs predominantly in Th1 cells and is associated with immune activation and up-regulation of Bcl-2, conferring a considerable degree of protection against apoptosis in the productively infected subpopulation. (Blood. 2004;103:4581-4587)
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献