Comprehensive Minimal Residual Disease (MRD) Analysis of the Fondazione Italiana Linfomi (FIL) MCL0208 Clinical Trial for Younger Patients with Mantle Cell Lymphoma: A Kinetic Model Ensures a More Refined Risk Stratification

Author:

Ferrero Simone12,Daniela Barbero2,Lo Schirico Mariella2,Evangelista Andrea3,Cifaratti Annalisa24,Drandi Daniela2,Genuardi Elisa2,Grimaldi Daniele2,Monitillo Luigia2,Zaccaria Gian Maria2,Stefani Pietro Maria5,Benedetti Fabio6,Casaroli Ivana7,Zanni Manuela8,Castellino Claudia9,Pavone Vincenzo10,Petrini Mario11,Re Francesca12,Hohaus Stefan13,Musuraca Gerardo14,Cascavilla Nicola15,Congiu Angela Giovanna16,Liberati Anna Marina17,Ciccone Giovannino3,Vitolo Umberto18,Cortelazzo Sergio19,Ladetto Marco8

Affiliation:

1. Division of Hematology, Azienda Ospedaliero-Univeristaria Città della Salute e della Scienza di Torino, Torino, Italy

2. Department of Molecular Biotechnologies and Health Sciences, Hematology Division, University of Turin, Turin, Italy

3. Unit of Clinical Epidemiology and CPO, Città della Salute e della Scienza, Turin, Italy

4. "Aldo Moro" University, Bari, Italy

5. Haematology Unit, Ca' Foncello Hospital, Treviso, Italy

6. Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy

7. Haematology Unit, Ospedale San Gerardo, Monza, Italy

8. Division of Hematology, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy

9. A.O. S. Croce e Carle, Cuneo, Italy

10. U.O.C. Ematologia e Trapianto, A.O. C. Panico, Tricase, Italy

11. Hematology Division, AOUP, Pisa, Italy

12. Azienda Ospedaliero-Universitaria di Parma, Parma, Italy

13. Institute of Hematology, Catholic University of the Sacred Heart, Rome, Italy

14. Hematology, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori, Meldola, Italy

15. Hematology, IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Italy

16. Department of Hematology, San Martino Hospital and University, Genova, Italy

17. Università degli Studi di Perugia, A.O. S. Maria, Terni, Italy

18. Department of Oncology and Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy

19. Clinica Humanitas/Gavazzeni, Bergamo, Italy

Abstract

Abstract Background and Aims. Minimal residual disease (MRD) detection by PCR-based methods is a relevant outcome predictor in MCL, however it is not clear which might represent the most effective methodology (nested vs real-time quantitative PCR, RQ-PCR), the most informative tissue source (bone marrow, BM, vs peripheral blood, PB), the best timing of analysis (midterm vs post-therapy) and the added value of performing multiple MRD determinations. To address these issues a systematic MRD detection program was performed in the Fondazione Italiana Linfomi (FIL) MCL0208 trial (NCT02354313), a prospective, randomized phase III trial comparing lenalidomide maintenance vs observation after an intensive citarabine containing chemo-immunotherapy (R-HDS) program followed by ASCT in 300 frontline MCL patients <66 years [Cortelazzo EHA2015]. Patients and methods. MRD was assessed with ASO primers on either IGH or BCL-1/IGH rearrangements by both nested and RQ-PCR in a Euro-MRD certified lab, both in PB and BM samples at the following time points (TP): diagnosis, after 3 R-CHOP-21 and R-high-dose cyclophosphamide (R-HD-CTX), after R-high-dose Ara-C (R-HDAC), after ASCT and every six months thereafter. Landmark analysis starting 12 months after consent using Cox models was performed based on MRD negativity at each TP. To evaluate the effect of MRD on PFS and OS, we considered also the whole follow-up (FU) period, including all available MRD evaluations as time-varying covariates, both in a dichotomous (pos vs. neg) and cumulative manner (0, 1, 2 or more consecutive MRD-negative results). Finally, the discrimination ability of MRD vs clinical evaluation after ASCT was assessed in the randomized population in terms of C index. All effects were estimated adjusting for MIPI score. Results. A total of 1476 BM and 1482 PB samples were collected, for a sampling compliance rate of 93%. 250 patients (83%) had a molecular marker and showed higher median baseline tumor infiltration by flow cytometry than no marker patients (BM 8.70% vs 0.35). 231/250 (92%) patients presented at least one FU sample and were thus studied for MRD by nested PCR, while 163/231 (71%) were studied also by RQ-PCR, according to the EuroMRD guidelines. Rates of MRD negativity in BM and PB by nested-PCR, as well as by RQ-PCR, were 29%, 46%, 36% and 49% after R-HD-CTX, 53%, 78%, 73% and 87% after R-HDAC, and 54%, 79%, 81% and 89% after ASCT, respectively. MRD positivity at every TP (either by nested or RQ-PCR, either in BM or PB) showed a two-fold higher risk of relapse or death during the six months following the sampling, independently of MIPI. Remarkably, similar two-fold HRs were recorded in terms of OS, too (Table 1A). In detail, RQ-PCR showed a higher risk increase than nested-PCR, as well as BM than PB. In the landmark analysis we found that the risk of relapse gradually increased, the more MRD negativity occurs later during therapy; actually, compared to patients with MRD response after R-HD-CTX, the HR was 1.24 for MRD responders after R-HDAC, 1.51 after ASCT and 2.04 for patients never achieving MRD response by RQ-PCR in BM (Table 1B). Therefore, 3y-PFS for patients MRD positive vs negative in BM by RQ-PCR was 53% vs 66% (HR=1.57, p=0.033) after R-HD-CTX, 47% vs 64% (HR=1.47, p=0.241) after R-HDAC and 25% vs 66% (HR=2.47, p=0.037) after ASCT. Overall, the PFS discrimination ability of MRD negativity after ASCT was better than the clinical response in terms of C-index (0.67 vs 0.62), according to Cox models including MIPI and randomization arm. Most importantly, the PFS risk seemed to follow a downward trend, according to the accumulation of MRD negative results, independently of the single TP. Actually, the presence of 2 or 3 consecutive MRD negative results conferred a significantly reduced risk of relapse, refining the risk stratification of a single MRD negativity (Table 1C). E.g., focusing on RQ-PCR in BM, the HR for relapse was 0.60 for a single negativity, 0.40 for 2 consecutive negative results and 0.27 for 3 or more. Conclusions. 1) MRD results are predictive both for PFS and OS in MCL; 2) RQ-PCR is the most reliable MRD technique and data derived from BM samples provide the best risk stratification; 3) MRD analysis performed at the TP post R-HD-CTX and post ASCT well describes patients' relapse risk, independently from MIPI, however: 4) a kinetic model, based on the combination of 2 or more MRD TP, provides a powerful risk stratification tool, suitable for MRD-guided treatment. Disclosures Vitolo: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Sandoz: Speakers Bureau; Gilead: Speakers Bureau; Takeda: Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3