Double-Unit Cord Blood (CB) Transplantation with Haplo-Identical CD34+ Cells (haplo-dCBT) May Speed Neutrophil Recovery Although Successful Bridging Is Contingent on Close Haplo-Winning CB Unit HLA-Match

Author:

Politikos Ioannis1,Devlin Sean M2,Mazis Christopher1,Maloy Molly1,Naputo Kristine1,Afuye Aishat Olaide1,Bhatt Valkal1,Scaradavou Andromachi3,O'Reilly Richard J.4,Avecilla Scott T5,Castro-Malaspina Hugo R.1,Cho Christina1,Dahi Parastoo B.1,Giralt Sergio1,Gyurkocza Boglarka1,Hsu Katharine C.1,Jakubowski Ann A.1,Papadopoulos Esperanza B.1,Perales Miguel-Angel1,Sauter Craig S.1,Scordo Michael1,Shaffer Brian C.1,Shah Gunjan L.1,Tamari Roni6,van den Brink Marcel R.M.1,Young James W.1,Ponce Doris1,Barker Juliet1

Affiliation:

1. Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY

2. Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY

3. Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY

4. Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, NY

5. Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY

6. Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering, New York, NY

Abstract

Abstract Background : While dCBT is associated with high rates of sustained donor engraftment, delayed neutrophil recovery in adults is frequent and can contribute to extended hospitalization and early transplant-related mortality. Methods : We investigated engraftment after myeloablative dCBT supplemented with CD34+ selected haploidentical PBSC (haploCD34+) in patients (pts) with high risk hematologic malignancies or aplastic anemia in a phase II clinical trial. The aim was to abrogate neutropenia (ANC >/= 500 within 14 days) with a haplo myeloid bridge prior to CB engraftment. Pts did not receive ATG due to the increased mortality risk reported in adult CBT. Double unit CB grafts allowed comparison to dCBT controls without haploidentical graft supplementation. Results : 78 adult pts [median age 48.5 years (range 21-68), median weight 82 kgs (range 48-138), 44 (56%) CMV+, 3 with prior allografts] underwent haplo-dCBT between 9/2012-12/2017. Diagnoses included 54 (69%) acute leukemias, 10 (13%) MDS/ MPN (all ≤ 10% blasts at work-up), 10 (17%) NHL/ HD and 1 aplastic anemia. Conditioning was myeloablative (1 Cy 120/ Flu 75/ TBI 1375, 77 intermediate intensity Cy 50/ Flu 150/ Thio 5-10/ TBI 400) with CSA/ MMF. CB units had a median infused TNC of 2.3 (range 1-5.7) x 107/kg/unit & median infused viable CD34+ cell dose of 1.1 (range 0.1-3.1) x 105/kg/unit with a median 5/8 (range 2-7) unit-recipient HLA-allele match. Haplo CD34+ grafts [procured from children (46%), siblings (31%), parents (13%) or extended family (10%)] had a median infused CD34+ dose of 5.2 x 106/kg (range 1.1-16.8) and a median infused CD3+ dose of 1.6 x 103/kg (range 0.3-13.7). Sixty-one (78%) haplos were 4/8 and 17 (22%) were 5-7/8 HLA-matched to the pt. In 77 evaluable pts (1 pt died on day 14), 4 engraftment patterns were observed (Table 1). All but 2 pts had sustained CB engraftment with either an optimal haplo-bridge (Gp. 1, 34/77, 44%), a transient bridge with a second nadir preceding CB engraftment (Gp. 2, 20/77, 26%), or no bridge (Gp. 3, 21/77, 27%). The 2 remaining pts had CB/ haplo graft failure (Gp. 4, 2/77, 3%); both were successfully re-transplanted with single CB units. While there was no difference in the day 100 TRM in the 34 optimal bridge pts vs pts with transient or no bridge [9% (95%CI 2-21) vs 15% (95%CI 6-27), p = 0.388], optimal bridge pts had faster platelet recovery [19 (range 14-41) vs 44.5 days (range 14-67)] and earlier hospital discharge [28.5 (range 20-60) vs 36 days (range 28-98)]. Similar to dCBT alone, chimerism analysis revealed sustained engraftment in haplo-dCBT is mediated by a "winning" CB unit. This was heralded by winning unit-derived T-cells seen as early as day +28. Although universal, the speed of haplo rejection varied, and a high haplo chimerism percentage early post-transplant did not guarantee successful bridging. Analysis of factors potentially predicting an optimal bridge is shown in Table 2. The median winning CB unit-haplo 8-allele HLA-match was 3/8 (range 1-7/8). In univariate analysis, higher haplo CD34+ dose/kg, > 4/8 haplo-recipient HLA-match and ≥ 3/8 winning unit-haplo HLA-match were associated with a higher likelihood of bridging. Haplo CD34+ dose and winning unit-haplo HLA-match remained significant in multivariate analysis. Conclusions: While haplo-dCBT can be associated with enhanced neutrophil recovery, this platform does not guarantee a successful myeloid bridge due to early haplo rejection by the winning CB unit. This universal haplo rejection highlights the importance of the CB graft dose and quality with this ATG-free strategy as the CB will mediate sustained engraftment. Our findings have significance for strategies that combine unmanipulated CB with any third-party or ex vivo expanded T-cell depleted product given higher product CD34+ cell dose and better HLA-match to the unmanipulated CB unit could improve the likelihood of successful myeloid bridging. The data also support alternative approaches to improve myeloid recovery after CBT such as optimized unit selection and vivo expansion. Disclosures O'Reilly: Atara Biotherapeutics: Consultancy, Patents & Royalties, Research Funding. Perales:Takeda: Other: Personal fees; Novartis: Other: Personal fees; Incyte: Membership on an entity's Board of Directors or advisory committees, Other: Personal fees and Clinical trial support; Merck: Other: Personal fees; Abbvie: Other: Personal fees. Sauter:Juno Therapeutics: Consultancy, Research Funding; Sanofi-Genzyme: Consultancy, Research Funding; Spectrum Pharmaceuticals: Consultancy; Novartis: Consultancy; Precision Biosciences: Consultancy; Kite: Consultancy. Shah:Janssen: Research Funding; Amgen: Research Funding.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3