Gene Therapy for Sickle Cell Anemia Using a Modified Gamma Globin Lentivirus Vector and Reduced Intensity Conditioning Transplant Shows Promising Correction of the Disease Phenotype

Author:

Malik Punam1,Grimley Michael2,Quinn Charles T.1,Shova Amy3,Courtney Little3,Lutzko Carolyn4,Kalfa Theodosia A.1,Niss Omar1,Mehta Parinda A5,Chandra Sharat5,Grassman Elke6,Van der Loo Johannes C.M.6,Witting Scott6,Nordling Diana6,Shreshta Archana6,Felker Sydney6,Terrell Catherine6,Reeves Lilith6,Pillis Devin7,Anastacia Loberg6,Bushman Frederic D8,Knight-Madden Jennifer9,Kalinyak Karen1,Davies Stella M.2,Asnani Monika10

Affiliation:

1. Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH

2. Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH

3. Cancer and Blood Disease Institute, Cincinnati Children's Hospital, Cincinnati, OH

4. Cincinnati Children's Hospital Medical Center, Cincinnati, OH

5. Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH

6. Cincinnati Children's Hospital, Cincinnati, OH

7. Cincinnati Children's Hospital, Cincinnati,

8. Department of Microbiology, University of Pennsylvania, Philadelphia, PA

9. Caribbean Institute for Health Research, Kingston, Jamaica

10. Carribean Health Research Institute, Kingston, Jamaica

Abstract

Abstract Background: Genetic transfer of an anti-sickling β87-globin lentiviral vector (LV) into hematopoietic stem cells (HSC) followed by myeloablative transplant has cured one child with sickle cell anemia (SCA) (NEJM 2017), although it was not successful in 7 subsequent adult SCA patients, and modifications to intensify ablative conditioning, improve HSC dose, gene transfer are underway (Blood 130 Suppl 1: 527, 2017). Based upon our preclinical data (Blood 2009), we embarked upon a Reduced Intensity Conditioning (RIC) Phase I/II Pilot Study on Gene Transfer in Patients with SCA with a modified γ-Globin LV (NCT02186418), hypothesizing this approach will be safe, feasible and efficacious; Moreover, RIC will have significantly less toxicity, costs, and be implementable in many transplant centers, including those in some of the resource-poor countries, where supportive therapies for myeloablative transplants are unavailable, and where majority of SCA patients exist. Methods: Adult patients with severe SCA deemed eligible were transfused/erythrocytapheresed prior to HSC collection and transfused for 6 months post-transplant (PT) to Hb>10g/dl and HbS~30%. CD34+ HSC were collected via bone marrow harvest (BMH) and/or plerixafor mobilized Peripheral Blood Stem Collection (PBSC), selected for CD34+ cells and transduced. Patients received a single dose of IV melphalan (140mg/m2 BSA) 36hr prior to infusion of γ-globin modified (GM)-HSC. Patients were monitored for adverse events (AE), engraftment, vector copy number (VCN), modified HbF (HbF*) expression and clinical features of SCA. Results: Two SCA patients (35yo and 25yo) with HbS-β0 thalassemia genotype were treated. CD34+ HSC were collected via multiple BMH (P1) and BMH+PBSC (P2). Follow up data are available for 6 and 12mo on P1 and P2. P1 received 1x106 CD34+ cells/kgbw [vector copy number (VCN) 0.22], and P2 received 6.9x106 CD34+ cells/kgbw [VCN 0.46]. Time to neutrophil engraftment (ANC ≥ 500) was day 9 and 7 post-transplant (PT) in P1 and P2, respectively, and time to Plt recovery (Plt>50K) was day 14 PT in both. Patients included in this trial had severe disease and continued to have pre-existing chronic pain requiring significant opiates; hence ~80% of the AEs were pain events; other AEs were anticipated transient laboratory AEs associated with melphalan. Following GM-HSC infusion, both patients showed a progressive rise in HbF* (a point mutation in the γ-globin LV allows distinction from endogenous HbF by HPLC) starting from day 30 PT. Since patients had transfused HbA containing RBCs in the initial 6 months, HbF*/(HbF*+HbS) was calculated, and was 20% and 21% in P1 and P2 at day 180 PT and VCN 0.2-0.4, detected in all lineages. Integration site analysis, performed on the infused products (Day 0), at day 30 PT on P1 and P2, and on day 180 PT on P1 demonstrated highly polyclonal pattern of integration. At 1 yr PT, P1 had 20% HbF* (2.1g/dl HbF*, total Hb 10.6) with a stable VCN of 0.2-0.4 in multiple lineages in bone marrow and peripheral blood. The baseline Hb of P1 was 7.5-8.5g/dL prior to transplant. In the preceding 2 years prior to transplant, both patients were admitted for pain crises/acute chest >5-6 times/yr, and had chronic pain requiring chronic opiates. Chronic pain persisted for 4-5 months PT in P1, after which P1 has not required IV opiates, negligible oral opiates and has had no hospital visits/admissions with acute sickle events. P2 has required decreasing amounts of oral opiates for chronic back pain. Conclusions: Early results from 2 SCA adults treated with a modified γ-globin LV modified autologous HSC following RIC transplant showed excellent safety, feasibility, with minimal post-transplant toxicity, rapid count recovery, and sustained stable genetically modified cells in peripheral blood and bone marrow. The first patient shows significant clinical amelioration of the SCA phenotype at 1 year PT, with 20% vector-derived HbF (HbF*) that has caused amelioration of anemia, near elimination of chronic pain and absence of acute sickle events. The second patient, although still early post-transplant shows a similar HbF* trajectory. Additional study data will demonstrate whether this level of HbF* will provide consistent clinical benefit to patients with severe SCA. These early results, especially following a RIC transpant, are extremely promising; and if sustained, will provide a 'transportable' safe and feasible gene therapy for SCA. Disclosures Malik: CSL Behring: Patents & Royalties. Quinn:Global Blood Therapeutics: Research Funding; Silver Lake Research Corporation: Research Funding; Amgen: Research Funding.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3