Endogenous HLA class II epitopes that are immunogenic in vivo show distinct behavior toward HLA-DM and its natural inhibitor HLA-DO

Author:

Kremer Anita N.1,van der Meijden Edith D.1,Honders Maria W.1,Goeman Jelle J.2,Wiertz Emmanuel J. H. J.3,Falkenburg J. H. Frederik1,Griffioen Marieke1

Affiliation:

1. Departments of Hematology and

2. Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands; and

3. Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands

Abstract

Abstract CD4+ T cells play a central role in adaptive immunity. The acknowledgment of their cytolytic effector function and the finding that endogenous antigens can enter the HLA class II processing pathway make CD4+ T cells promising tools for immunotherapy. Expression of HLA class II and endogenous antigen, however, does not always correlate with T-cell recognition. We therefore investigated processing and presentation of endogenous HLA class II epitopes that induced CD4+ T cells during in vivo immune responses. We demonstrate that the peptide editor HLA-DM allowed antigen presentation of some (DM-resistant antigens) but abolished surface expression of other natural HLA class II epitopes (DM-sensitive antigens). DM sensitivity was shown to be epitope specific, mediated via interaction between HLA-DM and the HLA-DR restriction molecule, and reversible by HLA-DO. Because of the restricted expression of HLA-DO, presentation of DM-sensitive antigens was limited to professional antigen-presenting cells, whereas DM-resistant epitopes were expressed on all HLA class II–expressing cells. In conclusion, our data provide novel insights into the presentation of endogenous HLA class II epitopes and identify intracellular antigen processing and presentation as a critical factor for CD4+ T-cell recognition. This opens perspectives to exploit selective processing capacities as a new approach for targeted immunotherapy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3