The Association between Clonal Hematopoiesis and Gout

Author:

Agrawal Mridul1,Niroula Abhishek234,Cunin Pierre5,McConkey Marie3,Kim Peter G.3,Wong Waihay J.3,Weeks Lachelle D.3,Lin Amy E.67,Miller Peter G.83,Gibson Christopher J.33,Sekar Aswin3,Neuberg Donna S.9,Bick Alexander G.10,Natarajan Pradeep111213,Nigrovic Peter A.5,Rao Deepak A.14,Ebert Benjamin L.153

Affiliation:

1. Dana-Farber Cancer Institute, Boston, MA

2. Department of Laboratory Medicine, Lund University, Lund, Sweden

3. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA

4. Broad Institute of MIT and Harvard, Cambridge, MA

5. Division of Immunology, Boston Children's Hospital, Boston, MA

6. Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA

7. Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

8. Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

9. Department of Data Science, Dana-Farber Cancer Institute, Boston,

10. Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN

11. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA

12. Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA

13. Department of Medicine, Harvard Medical School, Boston, MA

14. Brigham and Women's Hospital, Harvard Medical School, Boston, MA

15. Howard Hughes Medical Institute, Boston, MA

Abstract

Abstract Background: Gout is a highly prevalent arthritis associated with debilitating joint pain and functional impairment. It is caused by elevated serum uric acid levels (hyperuricemia) and triggered by precipitation of urate crystals in and around joints. Urate crystals are ingested by macrophages and provoke an innate immune response with subsequent secretion of inflammatory cytokines including interleukin 1 beta (IL-1B). Clonal hematopoiesis of indeterminate potential (CHIP) is a precursor to hematologic malignancies defined by somatic mutations in hematopoietic cells that drive clonal expansion and inflammation. Specifically, CHIP is associated with an increased risk of cardiovascular events and can accelerate atherosclerosis. Mutations in TET2, one of the most commonly mutated genes in CHIP, lead to increased expression of IL-1B through inflammasome activation. Here we investigate the role of CHIP in the development of gout using a combination of human genetic studies and mouse models of CHIP. Methods: To determine the clinical association between CHIP and gout, we analyzed exome sequencing and clinical data from >50,000 individuals included in the UK Biobank (UKB) and Mass General Brigham Biobank (MGBB). To test whether mutant blood cells can promote gout, Tet2- and Dnmt3a-deficient mouse models were used. Results: CHIP was more prevalent in individuals with gout than without gout (MGBB: 12.3% vs. 7.9%, P=0.017; UKB: 8.2% vs. 5.8%, P=0.011) and individuals with CHIP were at increased risk of developing gout (UKB: hazard ratio [HR], 1.59; 95% confidence interval [CI], 1.27-2.00; P<0.001). In multivariable analyses, CHIP with variant allele fraction (VAF) ≥10% was associated with higher risk of incident gout compared to no CHIP after adjusting for common gout risk factors (UKB: HR, 1.46; 95% CI, 1.07-2.01; P=0.019). To determine if somatically mutated blood cells directly contribute to the aberrant immune response in gout, we utilized a mouse model of MSU-mediated peritonitis. Compared to control animals, mice with hematopoietic-specific Tet2 deficiency demonstrated markedly increased IL-1B serum levels after injection with MSU (P<0.05). To study gene-specific contributions to joint tissue injury, we established an in vivo model that closely represents the clinical phenotype of gout. Following MSU treatment in situ, Tet2-deficient animals developed exacerbated paw edema compared to wild-type controls (P<0.05). We next generated bone-marrow derived macrophages (BMDM) from Tet2- and Dnmt3a-deficient mice to specifically investigate the MSU-induced cytokine profile in mutant macrophages. Consistent with our in vivo data, IL-1B was the most differentially secreted cytokine after MSU treatment in both Tet2-deficient and Dnmt3a-deficient BMDM compared to wild-type cells (P<0.05). RNA-sequencing confirmed a strong pro-inflammatory gene expression signature of MSU-treated Tet2- and Dnmt3a-deficient macrophages. Finally, we found that pharmacologic inhibition or genetic loss of inflammasome abrogated IL-1B secretion in Tet2- and Dnmt3a-deficient macrophages treated with MSU. Conclusion: CHIP is associated with an increased risk of having and developing gout in human cohorts and distinct mouse models confirm a direct influence of mutant hematopoietic cells on gout-induced inflammation and arthropathy. CHIP may provide a mechanistic explanation for the heterogeneity in clinical symptoms and inflammation due to gout. Our findings substantiate the biologic rationale for interventional strategies directed at CHIP-associated inflammatory conditions beyond cardiovascular disease and thereby define a path for clinical evaluation of targeted therapies for patients with CHIP-positive gout. Disclosures Miller: Foundation Medicine: Consultancy. Neuberg: Pharmacyclics: Research Funding; Madrigal Pharmaceuticals: Other: Stock ownership. Natarajan: Amgen: Research Funding; Apple: Consultancy, Research Funding; AstraZeneca: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Boston Scientific: Research Funding; Blackstone Life Sciences: Consultancy; Genentech: Consultancy; Foresite Labs: Consultancy. Rao: Janssen: Honoraria, Research Funding; Pfizer: Honoraria; Bristol-Myers Squibb: Honoraria, Research Funding; GlaxoSmithKline: Honoraria; Merck: Honoraria; Scipher Medicine: Honoraria.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3