Platelet homeostasis is regulated by platelet expression of CD47 under normal conditions and in passive immune thrombocytopenia

Author:

Olsson Mattias1,Bruhns Pierre1,Frazier William A.1,Ravetch Jeffrey V.1,Oldenborg Per-Arne1

Affiliation:

1. From the Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden; the Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY; and the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO.

Abstract

Abstract Interaction between target cell CD47 and the inhibitory macrophage receptor signal regulatory protein α (SIRPα) counteracts macrophage phagocytosis of CD47-expressing host cells. As platelets also express CD47, we asked whether inhibitory CD47/SIRPα signaling regulates normal platelet turnover and clearance of platelets in immune thrombocytopenic purpura (ITP). CD47-/- mice had a mild spontaneous thrombocytopenia, which was not due to a decreased platelet half-life as a result of increased expression of P-selectin, CD61, or phosphatidylserine. In contrast, CD47-/- platelets were rapidly cleared when transfused into CD47+/+ recipients, whereas CD47+/- platelets had a nearly normal half-life in CD47+/+ mice under nonautoimmune conditions. CD47-/- mice were more sensitive to ITP, as compared with CD47+/+ mice. In vitro, macrophage phagocytosis of immunoglobulin G (IgG)–opsonized CD47-/- platelets was significantly higher than that for equally opsonized CD47+/+ platelets. However, when SIRPα was blocked, phagocytosis of CD47+/+ platelets increased to the level of CD47-/- platelets. Phagocytosis of opsonized CD47+/- platelets was higher than that for CD47+/+ platelets, but lower than that for CD47-/- platelets, suggesting a gene-dose effect of CD47 in this system. In conclusion, we suggest that inhibitory CD47/SIRPα signaling is involved in regulating platelet phagocytosis in ITP, and that targeting SIRPα may be a new means of reducing platelet clearance in ITP.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3