Functional and structural correlations of individual αIIbβ3 molecules

Author:

Litvinov Rustem I.1,Nagaswami Chandrasekaran1,Vilaire Gaston1,Shuman Henry1,Bennett Joel S.1,Weisel John W.1

Affiliation:

1. From the Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia; the Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia; and the Hematology-Oncology Division of the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia.

Abstract

AbstractThe divalent cation Mn2+ and the reducing agent dithiothreitol directly shift integrins from their inactive to their active states. We used transmission electron microscopy and laser tweezers-based force spectroscopy to determine whether structural rearrangements induced by these agents in the integrin αIIbβ3 correlate with its ability to bind fibrinogen. Mn2+ increased the probability of specific fibrinogen-αIIbβ3 interactions nearly 20-fold in platelets, and both Mn2+ and dithiothreitol increased the probability more than 2-fold using purified proteins. Of 3 αIIbβ3 conformations, closed with stalks touching, open with stalks separated, and globular without visible stalks, Mn2+ and dithiothreitol induced a significant increase in the proportion of open structures, as well as structural changes in the αIIbβ3 headpiece. Mn2+ also increased the number of complexes between fibrinogen and purified αIIbβ3 molecules, all of which were in the open conformation. Finally, Mn2+ induced the formation of αIIbβ3 clusters that resulted from interactions exclusively involving the distal ends of the stalks. These results indicate that there is a direct correlation between αIIbβ3 activation and the overall conformation of the molecule. Further, they are consistent with the presence of a linked equilibrium between single inactive and single active αIIbβ3 molecules and active αIIbβ3 clusters. (Blood. 2004;104:3979-3985)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3