Affiliation:
1. From the Stem Cell Biology Program, James Graham Brown Cancer Center, and the Department of Medicine, University of Louisville, KY; the Department of Medicine, University of Alberta and Canadian Blood Services, Edmonton, AB, Canada; the Joint Program in Transfusion Medicine, Harvard Medical School, Boston, MA; and European Stem Cell Therapeutics Excellence Center CMUJ, Krakow, Poland.
Abstract
AbstractWe found that supernatants of leukapheresis products (SLPs) of patients mobilized with granulocyte–colony-stimulating factor (G-CSF) or the various components of SLPs (fibrinogen, fibronectin, soluble vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], and urokinase plasminogen activator receptor [uPAR]) increase the chemotactic responses of hematopoietic stem/progenitor cells (HSPCs) to stromal-derived factor-1 (SDF-1). However, alone they do not chemoattract HSPCs, but they do increase or prime the cells' chemotactic responses to a low or threshold dose of SDF-1. We observed that SLPs increased calcium flux, phosphorylation of mitogen-activated protein kinase (MAPK) p42/44 and AKT, secretion of matrix metalloproteinases, and adhesion to endothelium in CD34+ cells. Furthermore, SLPs increased SDF-dependent actin polymerization and significantly enhanced the homing of human cord blood (CB)– and bone marrow (BM)–derived CD34+ cells in a NOD/SCID mouse transplantation model. Moreover, the sensitization or priming of cell chemotaxis to an SDF-1 gradient was dependent on cholesterol content in the cell membrane and on the incorporation of the SDF-1 binding receptor CXCR4 and the small GTPase Rac-1 into membrane lipid rafts. This colocalization of CXCR4 and Rac-1 in lipid rafts facilitated guanosine triphosphate (GTP) binding/activation of Rac-1. Hence, we postulate that CXCR4 could be primed by various factors related to leukapheresis and mobilization that increase its association with membrane lipid rafts, allowing the HSPCs to better sense the SDF-1 gradient. This may partially explain why HSPCs from mobilized peripheral blood leukapheresis products engraft more quickly in patients than do those from BM or CB. Based on our findings, we suggest that the homing of HSPCs is optimal when CXCR4 is incorporated in membrane lipid rafts and that ex vivo priming of HSPCs with some of the SLP-related molecules before transplantation could increase their engraftment.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Reference53 articles.
1. Champlin RE, Schmitz N, Horowitz MM, et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation: IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT). Blood. 2000;95: 3702-3709.
2. Papayannopoulou T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood. 2004;103: 1580-1585.
3. Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002;30: 973-981.
4. Elfenbein GJ, Sackstein R. Primed marrow for autologous and allogeneic transplantation: a review comparing primed marrow to mobilized blood and steady-state marrow. Exp Hematol. 2004;32: 327-339.
5. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001;98: 1289-1297.
Cited by
215 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献