Affiliation:
1. Department of Molecular Microbiology and Immunology and
2. Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI
Abstract
AbstractKLRG1 is an inhibitory receptor expressed on a subset of mature T and NK cells. Recently, E-, N-, and R-cadherin have been identified as ligands for KLRG1. Cadherins are a large family of transmembrane or membrane-associated glycoproteins that were thought to only bind specifically to other cadherins to mediate specific cell-to-cell adhesion in a Ca2+-dependent manner. The consequences of cadherin KLRG1 molecular interactions are not well characterized. Here, we report that the first 2 extracellular domains of cadherin are sufficient to initiate a KLRG1-dependent signaling. We also demonstrate that KLRG1 engagement inhibits cadherin-dependent cellular adhesion and influences dendritic cell secretion of inflammatory cytokines, thereby exerting immunosuppressive effects. Consistent with this, engagement of cadherin by KLRG1 molecule induces cadherin tyrosine phosphorylation. Therefore, KLRG1/cadherin interaction leads to the generation of a bidirectional signal in which both KLRG1 and cadherin activate downstream signaling cascades simultaneously. Taken together, our results provide novel insights on how KLRG1 and E-cadherin interactions are integrated to differentially regulate not only KLRG1+ cells, but also E-cadherin–expressing cells, such as dendritic cells.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献