Translational control of c-MYC by rapamycin promotes terminal myeloid differentiation

Author:

Wall Meaghan12,Poortinga Gretchen1,Hannan Katherine M.1,Pearson Richard B.134,Hannan Ross D.134,McArthur Grant A.125

Affiliation:

1. Division of Research, Peter MacCallum Cancer Centre, East Melbourne;

2. Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy;

3. Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville;

4. Department of Biochemistry and Molecular Biology, Monash University, Clayton; and

5. Division of Haematology/Medical Oncology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia

Abstract

Abstract c-MYC inhibits differentiation and regulates the process by which cells acquire biomass, cell growth. Down-regulation of c-MYC, reduced cell growth, and decreased activity of the PI3K/AKT/mTORC1 signal transduction pathway are features of the terminal differentiation of committed myeloid precursors to polymorphonuclear neutrophils. Since mTORC1 regulates growth, we hypothesized that pharmacological inhibition of mTORC1 by rapamycin may reverse the phenotypic effects of c-MYC. Here we show that granulocytes blocked in their ability to differentiate by enforced expression of c-MYC can be induced to differentiate by reducing exogenous c-MYC expression through rapamycin treatment. Rapamycin also reduced expression of endogenous c-MYC and resulted in enhanced retinoid-induced differentiation. Total cellular c-Myc mRNA and c-MYC protein stability were unchanged by rapamycin, however the amount of c-Myc mRNA associated with polysomes was reduced. Therefore rapamycin limited expression of c-MYC by inhibiting c-Myc mRNA translation. These findings suggest that mTORC1 could be targeted to promote terminal differentiation in myeloid malignancies characterized by dysregulated expression of c-MYC.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference97 articles.

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3