Affiliation:
1. From the Departments of Pediatrics and Immunology/Microbiology, Rush Children's Hospital and Rush University, Chicago, IL.
Abstract
Abstract
Hemophilia is a genetic disease caused by a deficiency of blood coagulation factor VIII or IX. Bleeding into joints is the most frequent manifestation of hemophilia. Hemarthrosis results in an inflammatory and proliferative disorder termed hemophilic synovitis (HS). In time, a debilitating, crippling arthritis, hemophilic arthropathy, develops. Although the clinical sequence of events from joint bleeding to synovitis to arthropathy is well documented, the component or components in blood and the molecular changes responsible for hemophilic synovitis are not known. Iron has long been suspected to be the culprit but direct evidence has been lacking. Previously, we showed that iron increased human synovial cell proliferation and induced c-myc expression. Here we show that bleeding into a joint in vivo and iron in vitro result in increased expression of the p53-binding protein, mdm2. Iron induced the expression of mdm2 by normal human synovial cells approximately 8-fold. In a murine model of human hemophilia A, hemarthrosis resulted in pathologic changes observed in human hemophilic synovitis and a marked increase in synovial cell proliferation. Iron, in vitro, induced the expression of mdm2. The molecular changes induced by iron in the blood may be the basis of the increase in cell proliferation and the development of hemophilic synovitis. (Blood. 2004;104:2060-2064)
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
125 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献