Glutathione-S-transferase π inhibits As2O3-induced apoptosis in lymphoma cells: involvement of hydrogen peroxide catabolism

Author:

Zhou Li1,Jing Yongkui1,Styblo Miroslav1,Chen Zhu1,Waxman Samuel1

Affiliation:

1. From the Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, New York, NY; the Department of Pediatrics and Nutrition, University of North Carolina, Chapel Hill; and the Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Second Medical University, China.

Abstract

AbstractArsenic trioxide (As2O3) is an effective agent for the treatment of relapsed and refractory acute promyelocytic leukemia by induction of partial differentiation and apoptosis. As2O3, at therapeutic concentrations (1-2 μM), induced apoptosis in Raji lymphoma cells but not in Jurkat lymphoma cells, which inversely correlated with the levels of glutathione-S-transferase π (GSTP1), but not GSTπ1 and GSTM1, expression and activity. GSTP1 mRNA, protein level, and activity were high in Jurkat cells but undetectable in Raji cells. Stable transfection of GSTP1 into Raji cells decreased the amount of As2O3-induced apoptosis. Apoptosis induced by therapeutic concentrations of As2O3 in Raji cells is related to increasing H2O2 intracellular accumulation but not to JNK activation. Forced expression of GSTP1 by transfection of Raji cells significantly decreased the basal amount of H2O2 and its levels after therapeutic concentration of As2O3 treatment. Added exogenous H2O2 was removed more rapidly, which correlated with a greater decrease in reduced glutathione level in Raji clones expressing GSTP1 than in those clones without GSTP1 expression. Overexpression of GSTP1 in transfected Raji clones was also found to decrease the retention of As2O3. These data suggest that GSTP1 blocks As2O3-induced apoptosis in lymphoma cells by decreasing intracellular amounts of H2O2 by catabolism and H2O2 production by decreasing the intracellular retention of As2O3.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3