Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease

Author:

Lood Christian12,Amisten Stefan3,Gullstrand Birgitta1,Jönsen Andreas2,Allhorn Maria4,Truedsson Lennart1,Sturfelt Gunnar2,Erlinge David3,Bengtsson Anders A.2

Affiliation:

1. Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology,

2. Department of Clinical Sciences, Section of Rheumatology,

3. Department of Cardiology, and

4. Department of Clinical Sciences, Section of Infection Medicine, Lund University and Lund University Hospital, Lund, Sweden

Abstract

AbstractPatients with systemic lupus erythematosus (SLE) have a markedly increased risk to develop cardiovascular disease, and traditional cardiovascular risk factors fail to account for this increased risk. We used microarray to probe the platelet transcriptome in patients with SLE and healthy controls, and the gene and protein expression of a subset of differentially expressed genes was further investigated and correlated to platelet activation status. Real-time PCR was used to confirm a type I interferon (IFN) gene signature in patients with SLE, and the IFN-regulated proteins PRKRA, IFITM1 and CD69 (P < .0001) were found to be up-regulated in platelets from SLE patients compared with healthy volunteers. Notably, patients with a history of vascular disease had increased expression of type I IFN-regulated proteins as well as more activated platelets compared with patients without vascular disease. We suggest that interferogenic immune complexes stimulate production of IFNα that up-regulates the megakaryocytic type I IFN-regulated genes and proteins. This could affect platelet activation and contribute to development of vascular disease in SLE. In addition, platelets with type I IFN signature could be a novel marker for vascular disease in SLE.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3