Estrogen stimulates arachidonoylethanolamide release from human endothelial cells and platelet activation

Author:

Maccarrone Mauro1,Bari Monica1,Battista Natalia1,Finazzi-Agrò Alessandro1

Affiliation:

1. From the Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy.

Abstract

Estrogen replacement therapy has been associated with reduction of cardiovascular events in postmenopausal women, though the mechanism for this benefit remains unclear. Here we show that at physiological concentrations estrogen activates the anandamide membrane transporter of human endothelial cells and leads to rapid elevation of calcium (apparent within 5 minutes) and release of nitric oxide (within 15 minutes). These effects are mediated by estrogen binding to a surface receptor, which shows an apparent dissociation constant (Kd) of 9.4 ± 1.4 nM, a maximum binding (Bmax) of 356 ± 12 fmol × mg protein−1, and an apparent molecular mass of approximately 60 kDa. We also show that estrogen binding to surface receptors leads to stimulation of the anandamide-synthesizing enzyme phospholipase D and to inhibition of the anandamide-hydrolyzing enzyme fatty acid amide hydrolase, the latter effect mediated by 15-lipoxygenase activity. Because the endothelial transporter is shown to move anandamide across the cell membranes bidirectionally, taken together these data suggest that the physiological activity of estrogen is to stimulate the release, rather than the uptake, of anandamide from endothelial cells. Moreover, we show that anandamide released from estrogen-stimulated endothelial cells, unlike estrogen itself, inhibits the secretion of serotonin from adenosine diphosphate (ADP)–stimulated platelets. Therefore, it is suggested that the peripheral actions of anandamide could be part of the molecular events responsible for the beneficial effects of estrogen.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3