Affiliation:
1. Surgery Branch and
2. Biostatistics and Date Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD
Abstract
Abstract
CD4+FoxP3+ regulatory T cells (Tregs) have been shown to suppress T cell–mediated host immune responses against self- and nonself-antigens; however, the impact of CD4+ Tregs on human antitumor immune responses and their influence on cancer treatment are unknown. In the present study, we explored the factors that influence CD4+ Treg reconstitution in patients receiving adoptive immunotherapy following conditioning regimens designed to enhance T-cell function and evaluated potential associations between CD4+ Treg levels and clinical responses to therapy. The analysis of 4 trials employing nonmyeloablative chemotherapy with or without total body irradiation (TBI) before adoptive T-cell transfer revealed that the percentage and number of reconstituting CD4+FoxP3+ Tregs observed in the peripheral blood was higher in nonresponders than in responders. The addition of TBI resulted in a further depletion of CD4+ Tregs, and the degree of depletion was dependent on the TBI dose. The number of administered doses of IL-2 was found to be positively associated with peripheral Treg reconstitution. These observations provide strong evidence that endogenous CD4+ Tregs have a negative impact on cancer therapy, and suggest that strategies reducing Treg levels may provide clinical benefit to cancer patients. All 5 clinical trials are registered at www.clinicaltrials.gov as NCT00001832, NCT00096382, NCT00335127, NCT00509496, and NCT00513604.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
166 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献