WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus–truncated CXCR4

Author:

Kawai Toshinao123,Choi Uimook1,Cardwell Lanise1,DeRavin Suk See1,Naumann Nora1,Whiting-Theobald Narda L.1,Linton Gilda F.1,Moon Jaehyun1,Murphy Philip M.4,Malech Harry L.1

Affiliation:

1. Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD;

2. Department of Gene Therapy, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan;

3. Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan

4. Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD;

Abstract

AbstractWHIM(warts, hypogammaglobulinemia, recurrent bacterial infection, and myelokathexis) syndrome is a rare immunodeficiency caused in many cases by autosomal dominant C-terminal truncation mutations in the chemokine receptor CXCR4. A prominent and unexplained feature of WHIM is myelokathexis (hypercellularity with apoptosis of mature myeloid cells in bone marrow and neutropenia). We transduced healthy human CD34+ peripheral blood–mobilized stem cells (PBSCs) with retrovirus vector encoding wild-type (wt) CXCR4 or WHIM-type mutated CXCR4 and studied these cells ex vivo in culture and after engraftment in a nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse xenograft model. Neither wt CXCR4 nor mutated CXCR4 transgene expression itself enhanced apoptosis of neutrophils arising in transduced PBSC cultures even with stimulation by a CXCR4 agonist, stromal cell–derived factor-1 (SDF-1 [CXCL12]). Excess wt CXCR4 expression by transduced human PBSCs enhanced marrow engraftment, but did not affect bone marrow (BM) apoptosis or the release of transduced leukocytes into PB. However, mutated CXCR4 transgene expression further enhanced BM engraftment, but was associated with a significant increase in apoptosis of transduced cells in BM and reduced release of transduced leukocytes into PB. We conclude that increased apoptosis of mature myeloid cells in WHIM is secondary to a failure of marrow release and progression to normal myeloid cell senescence, and not a direct effect of activation of mutated CXCR4.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3