Gram-positive bacteria enhance HIV-1 susceptibility in Langerhans cells, but not in dendritic cells, via Toll-like receptor activation

Author:

Ogawa Youichi1,Kawamura Tatsuyoshi1,Kimura Tetsuya2,Ito Masahiko3,Blauvelt Andrew4,Shimada Shinji1

Affiliation:

1. Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan;

2. Department of Retrovirology and Self-Defense, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan;

3. Department of Microbiology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan; and

4. Departments of Dermatology and Molecular Microbiology and Immunology, Oregon Health & Science University and Dermatology Service, Veterans Affairs Medical Center, Portland

Abstract

Abstract Although numerous studies have shown a higher risk of acquiring HIV infection in the presence of other sexually transmitted diseases, the biologic mechanisms responsible for enhanced HIV acquisition are unclear. Because Langerhans cells (LCs) are suspected to be the initial HIV targets after sexual exposure, we studied whether microbial components augment HIV infection in LCs by activating Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD) pattern recognition receptors. We found that TLR1/2 and TLR2/6 agonists dramatically enhanced both HIV susceptibility and replication in immature monocyte-derived LCs, whereas TLR3-5, TLR7-9, and NOD1,2 agonists did not significantly affect HIV infection. The same infection-enhancing effects were observed when LCs were incubated with other related bacterial components as well as with whole Gram+ bacteria. In resident LCs in human skin, TLR2 agonists also significantly increased HIV susceptibility. By contrast, TLR2 agonists and related bacterial components decreased HIV susceptibility in monocyte-derived dendritic cells (DCs). We found that TLR2 activation of LCs, but not DCs, resulted in a significant down-regulation of APOBEC3G, which is a cellular restriction factor for HIV. Given these data, we hypothesize that ligation of TLR2 by Gram+ bacterial products may underlie enhanced sexual transmission of HIV that occurs with concomitant bacterial sexually transmitted disease infections.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3