ALKBH5 Modulates Hematopoietic Stem and Progenitor Cell Energy Metabolism through m 6a Modification-Mediated RNA Stability

Author:

Gao Yimeng1,Zimmer Joshua T2,Vasic Radovan3,Liu Chengyang1,Gbyli Rana1,Zheng Shu-Jian2,Patel Amisha1,LIU Wei1,Nelakanti Raman4,Song Yuanbin1,Biancon Giulia1,Xiao Andrew4,Slavoff Sarah2,Simon Matthew D5,Flavell Richard6,Tebaldi Toma1,Li Hua-Bing7,Halene Stephanie1

Affiliation:

1. Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT

2. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT

3. Department of General Internal Medicine, University of Toronto, Toronto, Canada

4. Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT

5. Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT

6. Department of Immunobiology, Yale University School of Medicine, New Haven, CT

7. Shanghai Institute of Immunology, Shanghai, China

Abstract

Abstract During hematopoietic differentiation from hematopoietic stem cells (HSCs) to mature blood cells, cells undergo a metabolic shift from glycolysis to mitochondrial respiration. The mechanisms by which hematopoietic cells adjust their energy metabolism are still under investigation. N6-mehyladenosine (m 6A) mRNA modification has been reported to regulate numerous fundamental cellular processes through control of RNA stability or translational efficiency. The fat mass and obesity-associated protein (FTO), an m 6A m and m 6A mRNA demethylase, has been reported to affect cellular metabolism in acute myeloid leukemia (AML). ALKBH5, the specific RNA m 6A demethylase, controls oncogene expression in AML. ALKBH5 becomes highly expressed in hematopoietic progenitors during hematopoietic development but the physiological role of RNA m 6A demethylase during hematopoiesis remains unknown. To investigate the function of the RNA m 6A demethylase ALKBH5 in hematopoiesis, we generated Vav-iCre +; Alkbh5fl/fl (vcAlkbh5-/-) mice, resulting in deletion of Alkbh5 specifically in the hematopoietic system. vcAlkbh5-/-mice showed no hematopoietic defects at steady states up to 12 months of age. We applied TimeLapse-seq on lineage-depleted bone marrow cells of WT and vcAlkbh5-/- mice to determine whether loss of ALKBH5 perturbed mRNA stability and/or RNA turnover. Ogdh mRNA was the most destabilized transcript resulting in significantly reduced OGDH protein levels. OGDH is the rate-limiting enzyme in the tricarboxylic acid (TCA) cycle. Inhibition of OGDH subsequently induces production of L-2-hydroxyglutarate (L-2-HG), whose metabolism is closely coupled to energy metabolism through inhibition of oxygen consumption. L-2-HG, the enantiomer of D-2-HG, inhibits the function of a-ketoglutarate (a-KG)-dependent enzymes, including TET and KDM enzymes. We measured L- and D-2-HG in the plasma of WT and vcAlkbh5-/- mice by chiral derivatization to distinguish the two enantiomers. Although D-2-HG levels were similar in the plasma of WT and vcAlkbh5-/- mice, L-2-HG levels were significantly increased in the plasma of vcAlkbh5-/- mice. We therefore determined the function of Jumonji C-domain lysine demethylases (JmjC-KDMs) by measuring histone methylation: H3K9me3, H3K27me3 and H3K36me3 modifications were all significantly increased in Alkbh5-deficient hematopoietic cells. We next sought to understand whether reduction of OGDH expression and resulting increased L-2-HG levels production could impair energy metabolism via perturbation of the TCA cycle and oxidative phosphorylation (OXPHOS) in the mitochondria. We isolated lineage negative hematopoietic stem and progenitor cells (HSPCs) from WT and vcAlkbh5-/- mice and subjected these to the Seahorse ATP Rate Assay. Comparing oxygen consumption rate (OCR) data and the kinetics of the Extracellular Acidification Rate (ECAR) of both groups, we found that less ATP was produced by mitochondria of the vcAlkbh5-/- cells, while ATP produced by glycolysis showed no difference between the two groups. In the meantime, the ultrastructure of mitochondria in the Alkbh5-deficient cells remains normal. We next determined whether the attenuated energy metabolism of Alkbh5-deficient HSPCs was functionally relevant by testing HSPC function in competitive transplantation assays. Interestingly, vcAlkbh5-/- cells showed a significant competitive defect at all differentiation stages except in phenotypic long-term HSCs (LT-HSCs). This suggests that LT-HSCs, thought to preferentially rely on glycolysis as opposed to OXPHOS for their energy source, are protected from loss of ALKBH5 and OGDH. In conclusion, our study demonstrates that ALKBH5 modulates energy metabolism by regulating mRNA stability of metabolic enzymes through its m 6A demethylation activity during hematopoiesis. This finding links Alkbh5 expression kinetics to the metabolic shift from glycolysis to mitochondrial OXPHOS during hematopoietic development. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3