Affiliation:
1. Department of Pediatrics and
2. Department of Pharmacology, Center for Molecular Therapeutics, Columbia College of Physicians and Surgeons, New York, NY;
3. Department of Anesthesia and
4. Department of Medicine, New York University School of Medicine, New York
Abstract
AbstractAn HIV antibody (Ab) against platelet integrin GPIIIa49-66 induces complement-independent platelet particle formation by the elaboration of reactive oxygen species (ROS) downstream of the activation of the platelet NADPH oxidase by the 12-lipoxygenase (12-LO) product 12(S)-HETE. To determine whether other inducers of platelet particle formation also function via the induction of ROS, we examined the effects of the Ca2+ ionophore A23187 and phorbol myristate acetate (PMA). Both agents induced oxidative platelet particle formation in an identical fashion as Ab, requiring Ca2+ flux and 12(S)-HETE production as well as intact NADPH oxidase and 12-LO pathways. Since HIV-ITP patients with this Ab correct their platelet counts with dexamethasone (Dex), we examined the role of this steroid in this unique autoimmune disorder. Dex at therapeutic concentrations inhibited Ab-, A23187-, or PMA-induced platelet particle formation by inhibiting platelet PLA2, 12-LO, and NADPH oxidase. The operational requirement of translocation of PLA2, 12-LO, and NADPH oxidase components (p67 phox) from cytosol to membrane for induction of ROS was both inhibited and partially reversed by Dex in platelets. We conclude that (1) platelet particle formation can be induced by the generation of ROS; and (2) platelet PLA2, 12-LO, NADPH oxidase, and cytosol membrane translocation, requirements for ROS production, are inhibited by Dex.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献